mlflow.projects¶
-
class
mlflow.projects.
EntryPoint
(name, parameters, command)¶ Bases:
object
An entry point in an MLproject specification.
-
compute_command
(user_parameters, storage_dir)¶
-
compute_parameters
(user_parameters, storage_dir)¶ Given a dict mapping user-specified param names to values, computes parameters to substitute into the command for this entry point. Returns a tuple (params, extra_params) where params contains key-value pairs for parameters specified in the entry point definition, and extra_params contains key-value pairs for additional parameters passed by the user.
Note that resolving parameter values can be a heavy operation, e.g. if a remote URI is passed for a parameter of type path, we download the URI to a local path within storage_dir and substitute in the local path as the parameter value.
-
-
exception
mlflow.projects.
ExecutionException
¶ Bases:
Exception
-
class
mlflow.projects.
Parameter
(name, yaml_obj)¶ Bases:
object
A parameter in an MLproject entry point.
-
compute_value
(user_param_value, storage_dir)¶
-
-
class
mlflow.projects.
Project
(uri, yaml_obj)¶ Bases:
object
A project specification loaded from an MLproject file.
-
get_entry_point
(entry_point)¶
-
-
mlflow.projects.
run
(uri, entry_point='main', version=None, parameters=None, experiment_id=None, mode=None, cluster_spec=None, git_username=None, git_password=None, use_conda=True, use_temp_cwd=False, storage_dir=None)¶ Run an MLflow project from the given URI in a new directory.
Supports downloading projects from Git URIs with a specified version, or copying them from the file system. For Git-based projects, a commit can be specified as the version.
Parameters: - entry_point – Entry point to run within the project. If no entry point with the specified name is found, attempts to run the project file entry_point as a script, using “python” to run .py files and the default shell (specified by environment variable $SHELL) to run .sh files.
- experiment_id – ID of experiment under which to launch the run.
- mode – Execution mode for the run. Can be set to “databricks” or “local”
- cluster_spec – Path to JSON file describing the cluster to use when launching a run on Databricks.
- git_username – Username for HTTP(S) authentication with Git.
- git_password – Password for HTTP(S) authentication with Git.
- use_conda – If True (the default), creates a new Conda environment for the run and installs project dependencies within that environment. Otherwise, runs the project in the current environment without installing any project dependencies.
- use_temp_cwd – Only used if mode is “local” and uri is a local directory. If True, copies project to a temporary working directory before running it. Otherwise (the default), runs project using uri (the project’s path) as the working directory.
- storage_dir – Only used if mode is local. MLflow will download artifacts from distributed URIs passed to parameters of type ‘path’ to subdirectories of storage_dir.