mlflow.entities

All entities returned by the MLflow REST API.

class mlflow.entities.Experiment(experiment_id, name, artifact_location)

Bases: mlflow.entities._mlflow_object._MLflowObject

Experiment object for python client. Backend stores will hydrate this object in APIs.

DEFAULT_EXPERIMENT_ID = 0
artifact_location
experiment_id
classmethod from_proto(proto)
name
to_proto()
class mlflow.entities.FileInfo(path, is_dir, file_size)

Bases: mlflow.entities._mlflow_object._MLflowObject

file_size
classmethod from_proto(proto)
is_dir
path
to_proto()
class mlflow.entities.Metric(key, value, timestamp)

Bases: mlflow.entities._mlflow_object._MLflowObject

Metric object for python client. Backend stores will hydrate this object in APIs.

classmethod from_proto(proto)
key
timestamp
to_proto()
value
class mlflow.entities.Param(key, value)

Bases: mlflow.entities._mlflow_object._MLflowObject

Param object for python client. Backend stores will hydrate this object in APIs.

classmethod from_proto(proto)
key
to_proto()
value
class mlflow.entities.Run(run_info, run_data)

Bases: mlflow.entities._mlflow_object._MLflowObject

Run object for python client. Backend stores will hydrate this object in APIs.

data

returnmlflow.entities.RunData

classmethod from_dictionary(the_dict)
classmethod from_proto(proto)
info

returnmlflow.entities.RunInfo

to_dictionary()
to_proto()
class mlflow.entities.RunData(metrics=None, params=None)

Bases: mlflow.entities._mlflow_object._MLflowObject

add_metric(metric)
add_param(param)
classmethod from_dictionary(the_dict)
classmethod from_proto(proto)
metrics
params
to_proto()
class mlflow.entities.RunInfo(run_uuid, experiment_id, name, source_type, source_name, entry_point_name, user_id, status, start_time, end_time, source_version, tags, artifact_uri=None)

Bases: mlflow.entities._mlflow_object._MLflowObject

artifact_uri
copy_with_overrides(status, end_time)

Returns a copy the current RunInfo with certain attributes modified

end_time

End time of the run, in number of milliseconds since the UNIX epoch.

entry_point_name
experiment_id
classmethod from_dictionary(the_dict)
classmethod from_proto(proto)
name
run_uuid
source_name
source_type
source_version
start_time

Start time of the run, in number of milliseconds since the UNIX epoch.

status
tags
to_proto()
user_id
class mlflow.entities.RunStatus

Bases: object

FAILED = 4
FINISHED = 3
RUNNING = 1
SCHEDULED = 2
static from_string(status_str)
static is_terminated(status)
static to_string(status)
class mlflow.entities.RunTag(key, value)

Bases: mlflow.entities._mlflow_object._MLflowObject

classmethod from_proto(proto)
key
to_proto()
value
class mlflow.entities.SourceType

Bases: object

JOB = 2
LOCAL = 4
NOTEBOOK = 1
PROJECT = 3
UNKNOWN = 5