mlflow.tensorflow
The mlflow.tensorflow
module provides an API for logging and loading TensorFlow models.
This module exports TensorFlow models with the following flavors:
- TensorFlow (native) format
- This is the main flavor that can be loaded back into TensorFlow.
mlflow.pyfunc
- Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.tensorflow.
load_model
(path, tf_sess, run_id=None) Load an MLflow model that contains the TensorFlow flavor from the specified path.
This method must be called within a TensorFlow graph context.
Parameters: - path – The local filesystem path or run-relative artifact path to the model.
- tf_sess – The TensorFlow session in which to the load the model.
Returns: A TensorFlow signature definition of type:
tensorflow.core.protobuf.meta_graph_pb2.SignatureDef
. This defines the input and output tensors for model inference.>>> import mlflow.tensorflow >>> import tensorflow as tf >>> tf_graph = tf.Graph() >>> tf_sess = tf.Session(graph=tf_graph) >>> with tf_graph.as_default(): >>> signature_definition = mlflow.tensorflow.load_model(path="model_path", tf_sess=tf_sess) >>> input_tensors = [tf_graph.get_tensor_by_name(input_signature.name) >>> for _, input_signature in signature_def.inputs.items()] >>> output_tensors = [tf_graph.get_tensor_by_name(output_signature.name) >>> for _, output_signature in signature_def.outputs.items()]
-
mlflow.tensorflow.
log_model
(tf_saved_model_dir, tf_meta_graph_tags, tf_signature_def_key, artifact_path, conda_env=None) Log a serialized collection of TensorFlow graphs and variables as an MLflow model for the current run. This method operates on TensorFlow variables and graphs that have been serialized in TensorFlow’s
SavedModel
format. For more information aboutSavedModel
format, see the TensorFlow documentation: https://www.tensorflow.org/guide/saved_model#save_and_restore_models.Parameters: - tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and
graphs in
SavedModel
format. - tf_meta_graph_tags – A list of tags identifying the model’s metagraph within the
serialized
SavedModel
object. For more information, see thetags
parameter of thetf.saved_model.builder.SavedModelBuilder
method. - tf_signature_def_key – A string identifying the input/output signature associated with the
model. This is a key within the serialized
SavedModel
signature definition mapping. For more information, see thesignature_def_map
parameter of thetf.saved_model.builder.SavedModelBuilder
method. - artifact_path – The run-relative path to which to log model artifacts.
- conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
mlflow.tensorflow.DEFAULT_CONDA_ENV
. IfNone
, the defaultmlflow.tensorflow.DEFAULT_CONDA_ENV
environment will be added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'tensorflow=1.8.0' ] }
- tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and
graphs in
-
mlflow.tensorflow.
save_model
(tf_saved_model_dir, tf_meta_graph_tags, tf_signature_def_key, path, mlflow_model=<mlflow.models.Model object>, conda_env=None) Save a serialized collection of TensorFlow graphs and variables as an MLflow model to a local path. This method operates on TensorFlow variables and graphs that have been serialized in TensorFlow’s
SavedModel
format. For more information aboutSavedModel
format, see the TensorFlow documentation: https://www.tensorflow.org/guide/saved_model#save_and_restore_models.Parameters: - tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and
graphs in
SavedModel
format. - tf_meta_graph_tags – A list of tags identifying the model’s metagraph within the
serialized
SavedModel
object. For more information, see thetags
parameter of thetf.saved_model.builder.savedmodelbuilder
method. - tf_signature_def_key – A string identifying the input/output signature associated with the
model. This is a key within the serialized
savedmodel
signature definition mapping. For more information, see thesignature_def_map
parameter of thetf.saved_model.builder.savedmodelbuilder
method. - path – Local path where the MLflow model is to be saved.
- mlflow_model – MLflow model configuration to which this flavor will be added.
- conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
mlflow.tensorflow.DEFAULT_CONDA_ENV
. IfNone
, the defaultmlflow.tensorflow.DEFAULT_CONDA_ENV
environment will be added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'tensorflow=1.8.0' ] }
- tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and
graphs in