mlflow.entities
The mlflow.entities
module defines entities returned by the MLflow
REST API.
-
class
mlflow.entities.
Experiment
(experiment_id, name, artifact_location, lifecycle_stage)
Bases: mlflow.entities._mlflow_object._MLflowObject
Experiment object.
-
DEFAULT_EXPERIMENT_NAME
= 'Default'
-
artifact_location
String corresponding to the root artifact URI for the experiment.
-
experiment_id
String ID of the experiment.
-
classmethod
from_proto
(proto)
-
lifecycle_stage
Lifecycle stage of the experiment. Can either be ‘active’ or ‘deleted’.
-
name
String name of the experiment.
-
to_proto
()
-
class
mlflow.entities.
FileInfo
(path, is_dir, file_size)
Bases: mlflow.entities._mlflow_object._MLflowObject
Metadata about a file or directory.
-
file_size
Size of the file or directory. If the FileInfo is a directory, returns None.
-
classmethod
from_proto
(proto)
-
is_dir
Whether the FileInfo corresponds to a directory.
-
path
String path of the file or directory.
-
to_proto
()
-
class
mlflow.entities.
Metric
(key, value, timestamp)
Bases: mlflow.entities._mlflow_object._MLflowObject
Metric object.
-
classmethod
from_proto
(proto)
-
key
String key corresponding to the metric name.
-
timestamp
Metric timestamp as an integer (milliseconds since the Unix epoch).
-
to_proto
()
-
value
Float value of the metric.
-
class
mlflow.entities.
Param
(key, value)
Bases: mlflow.entities._mlflow_object._MLflowObject
Parameter object.
-
classmethod
from_proto
(proto)
-
key
String key corresponding to the parameter name.
-
to_proto
()
-
value
String value of the parameter.
-
class
mlflow.entities.
Run
(run_info, run_data)
Bases: mlflow.entities._mlflow_object._MLflowObject
Run object.
-
data
The run data, including metrics, parameters, and tags.
-
classmethod
from_dictionary
(the_dict)
-
classmethod
from_proto
(proto)
-
info
The run metadata, such as the run id, start time, and status.
-
to_dictionary
()
-
to_proto
()
-
class
mlflow.entities.
RunData
(metrics=None, params=None, tags=None)
Bases: mlflow.entities._mlflow_object._MLflowObject
Run data (metrics and parameters).
-
classmethod
from_dictionary
(the_dict)
-
classmethod
from_proto
(proto)
-
metrics
List of mlflow.entities.Metric
for the current run.
-
params
List of mlflow.entities.Param
for the current run.
-
tags
List of mlflow.entities.RunTag
for the current run.
-
to_dictionary
()
-
to_proto
()
-
class
mlflow.entities.
RunInfo
(run_uuid, experiment_id, name, source_type, source_name, entry_point_name, user_id, status, start_time, end_time, source_version, lifecycle_stage, artifact_uri=None)
Bases: mlflow.entities._mlflow_object._MLflowObject
Metadata about a run.
-
artifact_uri
String root artifact URI of the run.
-
end_time
End time of the run, in number of milliseconds since the UNIX epoch.
-
entry_point_name
String name of the entry point for the run.
-
experiment_id
String ID of the experiment for the current run.
-
classmethod
from_proto
(proto)
-
lifecycle_stage
-
name
String name of the run.
-
run_uuid
String containing run UUID.
-
source_name
String name of the source of the run (GitHub URI of the project corresponding to the run,
etc).
-
source_type
mlflow.entities.SourceType
describing the source of the run.
-
source_version
String Git commit hash of the code used for the run, if available.
-
start_time
Start time of the run, in number of milliseconds since the UNIX epoch.
-
status
One of the values in mlflow.entities.RunStatus
describing the status of the run.
-
to_proto
()
-
user_id
String ID of the user who initiated this run.
-
class
mlflow.entities.
RunStatus
Bases: object
Enum for status of an mlflow.entities.Run
.
-
FAILED
= 4
-
FINISHED
= 3
-
RUNNING
= 1
-
SCHEDULED
= 2
-
static
from_string
(status_str)
-
static
is_terminated
(status)
-
static
to_string
(status)
-
class
mlflow.entities.
RunTag
(key, value)
Bases: mlflow.entities._mlflow_object._MLflowObject
Tag object associated with a run.
-
classmethod
from_proto
(proto)
-
key
String name of the tag.
-
to_proto
()
-
value
String value of the tag.
-
class
mlflow.entities.
SourceType
Bases: object
Enum for originating source of a mlflow.entities.Run
.
-
JOB
= 2
-
LOCAL
= 4
-
NOTEBOOK
= 1
-
PROJECT
= 3
-
SOURCETYPE_TO_STRING
= {1: 'NOTEBOOK', 2: 'JOB', 3: 'PROJECT', 4: 'LOCAL', 5: 'UNKNOWN'}
-
UNKNOWN
= 5
-
static
from_string
(status_str)
-
static
to_string
(status)
-
class
mlflow.entities.
ViewType
Bases: object
Enum to filter requested experiment types.
-
ACTIVE_ONLY
= 1
-
ALL
= 3
-
DELETED_ONLY
= 2
-
classmethod
from_proto
(proto_view_type)
-
classmethod
from_string
(view_str)
-
classmethod
to_proto
(view_type)
-
classmethod
to_string
(view_type)
-
class
mlflow.entities.
LifecycleStage
Bases: object
-
ACTIVE
= 'active'
-
DELETED
= 'deleted'
-
classmethod
is_valid
(lifecycle_stage)
-
classmethod
matches_view_type
(view_type, lifecycle_stage)
-
classmethod
view_type_to_stages
(view_type=3)