mlflow.h2o
The mlflow.h2o
module provides an API for logging and loading H2O models. This module exports
H2O models with the following flavors:
- H20 (native) format
- This is the main flavor that can be loaded back into H2O.
mlflow.pyfunc
- Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.h2o.
get_default_conda_env
() Returns: The default Conda environment for MLflow Models produced by calls to save_model()
andlog_model()
.
-
mlflow.h2o.
load_model
(model_uri) Load an H2O model from a local file (if
run_id
isNone
) or a run. This function expects there is an H2O instance initialised withh2o.init
.Parameters: model_uri – The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
For more information about supported URI schemes, see Referencing Artifacts.
Returns: An H2OEstimator model object.
-
mlflow.h2o.
log_model
(h2o_model, artifact_path, conda_env=None, **kwargs) Log an H2O model as an MLflow artifact for the current run.
Parameters: - h2o_model – H2O model to be saved.
- artifact_path – Run-relative artifact path.
- conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
- kwargs – kwargs to pass to
h2o.save_model
method.
-
mlflow.h2o.
save_model
(h2o_model, path, conda_env=None, mlflow_model=<mlflow.models.Model object>, settings=None) Save an H2O model to a path on the local file system.
Parameters: - h2o_model – H2O model to be saved.
- path – Local path where the model is to be saved.
- conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
- mlflow_model –
mlflow.models.Model
this flavor is being added to.