Source code for mlflow.spacy

"""
The ``mlflow.spacy`` module provides an API for logging and loading spaCy models.
This module exports spacy models with the following flavors:

spaCy (native) format
    This is the main flavor that can be loaded back into spaCy.
:py:mod:`mlflow.pyfunc`
    Produced for use by generic pyfunc-based deployment tools and batch inference.
"""
import logging
import os

import pandas as pd
import yaml

import mlflow
from mlflow import pyfunc
from mlflow.exceptions import MlflowException
from mlflow.models import Model, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.utils import ModelInputExample, _save_example
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.environment import _mlflow_conda_env
from mlflow.utils.model_utils import _get_flavor_configuration

FLAVOR_NAME = "spacy"

_logger = logging.getLogger(__name__)


[docs]def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import spacy return _mlflow_conda_env( additional_conda_deps=None, additional_pip_deps=[ "spacy=={}".format(spacy.__version__), ], additional_conda_channels=None)
[docs]def save_model(spacy_model, path, conda_env=None, mlflow_model=None, signature: ModelSignature = None, input_example: ModelInputExample = None): """ Save a spaCy model to a path on the local file system. :param spacy_model: spaCy model to be saved. :param path: Local path where the model is to be saved. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'spacy==2.2.3' ] ] } :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. """ import spacy path = os.path.abspath(path) if os.path.exists(path): raise MlflowException("Unable to save MLflow model to {path} - path '{path}' " "already exists".format(path=path)) model_data_subpath = "model.spacy" model_data_path = os.path.join(path, model_data_subpath) os.makedirs(model_data_path) if mlflow_model is None: mlflow_model = Model() if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) # Save spacy-model spacy_model.to_disk(path=model_data_path) conda_env_subpath = "conda.yaml" if conda_env is None: conda_env = get_default_conda_env() elif not isinstance(conda_env, dict): with open(conda_env, "r") as f: conda_env = yaml.safe_load(f) with open(os.path.join(path, conda_env_subpath), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Save the pyfunc flavor if at least one text categorizer in spaCy pipeline if any([isinstance(pipe_component[1], spacy.pipeline.TextCategorizer) for pipe_component in spacy_model.pipeline]): pyfunc.add_to_model(mlflow_model, loader_module="mlflow.spacy", data=model_data_subpath, env=conda_env_subpath) else: _logger.warning( "Generating only the spacy flavor for the provided spacy model. This means the model " "can be loaded back via `mlflow.spacy.load_model`, but cannot be loaded back using " "pyfunc APIs like `mlflow.pyfunc.load_model` or via the `mlflow models` CLI commands. " "MLflow will only generate the pyfunc flavor for spacy models containing a pipeline " "component that is an instance of spacy.pipeline.TextCategorizer.") mlflow_model.add_flavor(FLAVOR_NAME, spacy_version=spacy.__version__, data=model_data_subpath) mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
[docs]def log_model(spacy_model, artifact_path, conda_env=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, **kwargs): """ Log a spaCy model as an MLflow artifact for the current run. :param spacy_model: spaCy model to be saved. :param artifact_path: Run-relative artifact path. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'spacy==2.2.3' ] ] } :param registered_model_name: (Experimental) If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param kwargs: kwargs to pass to ``spacy.save_model`` method. """ Model.log(artifact_path=artifact_path, flavor=mlflow.spacy, registered_model_name=registered_model_name, spacy_model=spacy_model, conda_env=conda_env, signature=signature, input_example=input_example, **kwargs)
def _load_model(path): import spacy path = os.path.abspath(path) return spacy.load(path) class _SpacyModelWrapper: def __init__(self, spacy_model): self.spacy_model = spacy_model def predict(self, dataframe): """ Only works for predicting using text categorizer. Not suitable for other pipeline components (e.g: parser) :param dataframe: pandas dataframe containing texts to be categorized expected shape is (n_rows,1 column) :return: dataframe with predictions """ if len(dataframe.columns) != 1: raise MlflowException('Shape of input dataframe must be (n_rows, 1column)') return pd.DataFrame({ 'predictions': dataframe.iloc[:, 0].apply(lambda text: self.spacy_model(text).cats) }) def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``. :param path: Local filesystem path to the MLflow Model with the ``spacy`` flavor. """ return _SpacyModelWrapper(_load_model(path))
[docs]def load_model(model_uri): """ Load a spaCy model from a local file (if ``run_id`` is ``None``) or a run. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :return: A spaCy loaded model """ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) # Flavor configurations for models saved in MLflow version <= 0.8.0 may not contain a # `data` key; in this case, we assume the model artifact path to be `model.spacy` spacy_model_file_path = os.path.join(local_model_path, flavor_conf.get("data", "model.spacy")) return _load_model(path=spacy_model_file_path)