mlflow.h2o
The mlflow.h2o
module provides an API for logging and loading H2O models. This module exports
H2O models with the following flavors:
- H20 (native) format
This is the main flavor that can be loaded back into H2O.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.h2o.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.h2o.
load_model
(model_uri)[source] Load an H2O model from a local file (if
run_id
isNone
) or a run. This function expects there is an H2O instance initialised withh2o.init
.- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see Referencing Artifacts.
- Returns
-
mlflow.h2o.
log_model
(h2o_model, artifact_path, conda_env=None, registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list] = None, **kwargs)[source] Log an H2O model as an MLflow artifact for the current run.
- Parameters
h2o_model – H2O model to be saved.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
registered_model_name – (Experimental) If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.signature –
(Experimental)
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
kwargs – kwargs to pass to
h2o.save_model
method.
-
mlflow.h2o.
save_model
(h2o_model, path, conda_env=None, mlflow_model=None, settings=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list] = None)[source] Save an H2O model to a path on the local file system.
- Parameters
h2o_model – H2O model to be saved.
path – Local path where the model is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
signature –
(Experimental)
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
mlflow_model –
mlflow.models.Model
this flavor is being added to.