mlflow.sklearn
The mlflow.sklearn
module provides an API for logging and loading scikit-learn models. This
module exports scikit-learn models with the following flavors:
- Python (native) pickle format
This is the main flavor that can be loaded back into scikit-learn.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference. NOTE: The mlflow.pyfunc flavor is only added for scikit-learn models that define predict(), since predict() is required for pyfunc model inference.
-
mlflow.sklearn.
autolog
(log_input_examples=False, log_model_signatures=True)[source] Note
Experimental: This method may change or be removed in a future release without warning.
Enables autologging for scikit-learn estimators.
- When is autologging performed?
Autologging is performed when you call:
estimator.fit()
estimator.fit_predict()
estimator.fit_transform()
- Logged information
- Parameters
Parameters obtained by
estimator.get_params(deep=True)
. Note thatget_params
is called withdeep=True
. This means when you fit a meta estimator that chains a series of estimators, the parameters of these child estimators are also logged.
- Metrics
A training score obtained by
estimator.score
. Note that the training score is computed using parameters given tofit()
.Common metrics for classifier:
If the classifier has method
predict_proba
, we additionally log:Common metrics for regressor:
root mean squared error
- Tags
An estimator class name (e.g. “LinearRegression”).
A fully qualified estimator class name (e.g. “sklearn.linear_model._base.LinearRegression”).
- Artifacts
An MLflow Model with the
mlflow.sklearn
flavor containing a fitted estimator (logged bymlflow.sklearn.log_model()
). The Model also contains themlflow.pyfunc
flavor when the scikit-learn estimator defines predict().
- How does autologging work for meta estimators?
When a meta estimator (e.g. Pipeline, GridSearchCV) calls
fit()
, it internally callsfit()
on its child estimators. Autologging does NOT perform logging on these constituentfit()
calls.- Parameter search
In addition to recording the information discussed above, autologging for parameter search meta estimators (GridSearchCV and RandomizedSearchCV) records child runs with metrics for each set of explored parameters, as well as artifacts and parameters for the best model (if available).
- Supported estimators
All estimators obtained by sklearn.utils.all_estimators (including meta estimators).
Parameter search estimators (GridSearchCV and RandomizedSearchCV)
Example
from pprint import pprint import numpy as np from sklearn.linear_model import LinearRegression import mlflow def fetch_logged_data(run_id): client = mlflow.tracking.MlflowClient() data = client.get_run(run_id).data tags = {k: v for k, v in data.tags.items() if not k.startswith("mlflow.")} artifacts = [f.path for f in client.list_artifacts(run_id, "model")] return data.params, data.metrics, tags, artifacts # enable autologging mlflow.sklearn.autolog() # prepare training data X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 # train a model model = LinearRegression() with mlflow.start_run() as run: model.fit(X, y) # fetch logged data params, metrics, tags, artifacts = fetch_logged_data(run.info.run_id) pprint(params) # {'copy_X': 'True', # 'fit_intercept': 'True', # 'n_jobs': 'None', # 'normalize': 'False'} pprint(metrics) # {'training_score': 1.0, 'training_mae': 2.220446049250313e-16, 'training_mse': 1.9721522630525295e-31, 'training_r2_score': 1.0, 'training_rmse': 4.440892098500626e-16} pprint(tags) # {'estimator_class': 'sklearn.linear_model._base.LinearRegression', # 'estimator_name': 'LinearRegression'} pprint(artifacts) # ['model/MLmodel', 'model/conda.yaml', 'model/model.pkl']
- Parameters
log_input_examples – If
True
, input examples from training datasets are collected and logged along with scikit-learn model artifacts during training. IfFalse
, input examples are not logged.log_model_signatures – If
True
,ModelSignatures
describing model inputs and outputs are collected and logged along with scikit-learn model artifacts during training. IfFalse
, signatures are not logged.
-
mlflow.sklearn.
get_default_conda_env
(include_cloudpickle=False)[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.sklearn.
load_model
(model_uri)[source] Load a scikit-learn model from a local file or a run.
- Parameters
model_uri –
The location, in URI format, of the MLflow model, for example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see Referencing Artifacts.
- Returns
A scikit-learn model.
-
mlflow.sklearn.
log_model
(sk_model, artifact_path, conda_env=None, serialization_format='cloudpickle', registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list] = None, await_registration_for=300)[source] Log a scikit-learn model as an MLflow artifact for the current run. Produces an MLflow Model containing the following flavors:
mlflow.pyfunc
. NOTE: This flavor is only included for scikit-learn models that define predict(), since predict() is required for pyfunc model inference.
- Parameters
sk_model – scikit-learn model to be saved.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. If None, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'scikit-learn=0.19.2' ] }
serialization_format – The format in which to serialize the model. This should be one of the formats listed in
mlflow.sklearn.SUPPORTED_SERIALIZATION_FORMATS
. The Cloudpickle format,mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE
, provides better cross-system compatibility by identifying and packaging code dependencies with the serialized model.registered_model_name – (Experimental) If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.signature –
(Experimental)
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
await_registration_for – Number of seconds to wait for the model version to finish being created and is in
READY
status. By default, the function waits for five minutes. Specify 0 or None to skip waiting.
import mlflow import mlflow.sklearn from sklearn.datasets import load_iris from sklearn import tree iris = load_iris() sk_model = tree.DecisionTreeClassifier() sk_model = sk_model.fit(iris.data, iris.target) # set the artifact_path to location where experiment artifacts will be saved #log model params mlflow.log_param("criterion", sk_model.criterion) mlflow.log_param("splitter", sk_model.splitter) # log model mlflow.sklearn.log_model(sk_model, "sk_models")
-
mlflow.sklearn.
save_model
(sk_model, path, conda_env=None, mlflow_model=None, serialization_format='cloudpickle', signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list] = None)[source] Save a scikit-learn model to a path on the local file system. Produces an MLflow Model containing the following flavors:
mlflow.pyfunc
. NOTE: This flavor is only included for scikit-learn models that define predict(), since predict() is required for pyfunc model inference.
- Parameters
sk_model – scikit-learn model to be saved.
path – Local path where the model is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. If None, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'scikit-learn=0.19.2' ] }
mlflow_model –
mlflow.models.Model
this flavor is being added to.serialization_format – The format in which to serialize the model. This should be one of the formats listed in
mlflow.sklearn.SUPPORTED_SERIALIZATION_FORMATS
. The Cloudpickle format,mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE
, provides better cross-system compatibility by identifying and packaging code dependencies with the serialized model.signature –
(Experimental)
ModelSignature
describes model input and outputSchema
. The model signature can beinferred
from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded.
import mlflow.sklearn from sklearn.datasets import load_iris from sklearn import tree iris = load_iris() sk_model = tree.DecisionTreeClassifier() sk_model = sk_model.fit(iris.data, iris.target) # Save the model in cloudpickle format # set path to location for persistence sk_path_dir_1 = ... mlflow.sklearn.save_model( sk_model, sk_path_dir_1, serialization_format=mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE) # save the model in pickle format # set path to location for persistence sk_path_dir_2 = ... mlflow.sklearn.save_model(sk_model, sk_path_dir_2, serialization_format=mlflow.sklearn.SERIALIZATION_FORMAT_PICKLE)