• MLflow 2.20.1
MLflow
  • MLflow Overview
  • Getting Started with MLflow
  • New Features
  • LLMs
  • MLflow Tracing
  • Model Evaluation
  • Deep Learning
  • Traditional ML
  • Deployment
  • MLflow Tracking
  • System Metrics
  • MLflow Projects
  • MLflow Models
  • MLflow Model Registry
  • MLflow Recipes
  • MLflow Plugins
  • MLflow Authentication
  • Command-Line Interface
  • Search Runs
  • Search Experiments
  • Python API
    • mlflow
    • MLflow Tracing APIs
    • mlflow.anthropic
    • mlflow.artifacts
    • mlflow.autogen
    • mlflow.bedrock
    • mlflow.catboost
    • mlflow.client
    • mlflow.config
    • mlflow.crewai
    • mlflow.data
    • mlflow.deployments
    • mlflow.diviner
    • mlflow.dspy
    • mlflow.entities
    • mlflow.environment_variables
    • mlflow.evaluation
    • mlflow.fastai
    • mlflow.gateway
    • mlflow.gemini
    • mlflow.groq
    • mlflow.h2o
    • mlflow.johnsnowlabs
    • mlflow.keras
    • mlflow.langchain
    • mlflow.lightgbm
    • mlflow.litellm
    • mlflow.llama_index
    • mlflow.metrics
    • mlflow.mistral
    • mlflow.mleap
    • mlflow.models
    • mlflow.onnx
    • mlflow.paddle
    • mlflow.pmdarima
    • mlflow.projects
    • mlflow.promptflow
    • mlflow.prophet
    • mlflow.pyfunc
    • mlflow.pyspark.ml
    • mlflow.pytorch
    • mlflow.recipes
    • mlflow.sagemaker
    • mlflow.sentence_transformers
    • mlflow.server
    • mlflow.shap
    • mlflow.sklearn
    • mlflow.spacy
    • mlflow.spark
    • mlflow.statsmodels
    • mlflow.system_metrics
    • mlflow.tensorflow
    • mlflow.tracing
    • mlflow.transformers
    • mlflow.types
    • mlflow.utils
    • mlflow.xgboost
    • mlflow.openai
    • Log Levels
  • R API
  • Java API
  • REST API
  • Official MLflow Docker Image
  • Community Model Flavors
  • Tutorials and Examples

Contribute

  • Documentation
  • Python API

Python API

The MLflow Python API is organized into the following modules. The most common functions are exposed in the mlflow module, so we recommend starting there.

  • mlflow
  • MLflow Tracing APIs
  • mlflow.anthropic
  • mlflow.artifacts
  • mlflow.autogen
  • mlflow.bedrock
  • mlflow.catboost
  • mlflow.client
  • mlflow.config
  • mlflow.crewai
  • mlflow.data
  • mlflow.deployments
  • mlflow.diviner
  • mlflow.dspy
  • mlflow.entities
  • mlflow.environment_variables
  • mlflow.evaluation
  • mlflow.fastai
  • mlflow.gateway
  • mlflow.gemini
  • mlflow.groq
  • mlflow.h2o
  • mlflow.johnsnowlabs
  • mlflow.keras
  • mlflow.langchain
  • mlflow.lightgbm
  • mlflow.litellm
  • mlflow.llama_index
  • mlflow.metrics
  • mlflow.mistral
  • mlflow.mleap
  • mlflow.models
  • mlflow.onnx
  • mlflow.paddle
  • mlflow.pmdarima
  • mlflow.projects
  • mlflow.promptflow
  • mlflow.prophet
  • mlflow.pyfunc
  • mlflow.pyspark.ml
  • mlflow.pytorch
  • mlflow.recipes
  • mlflow.sagemaker
  • mlflow.sentence_transformers
  • mlflow.server
  • mlflow.shap
  • mlflow.sklearn
  • mlflow.spacy
  • mlflow.spark
  • mlflow.statsmodels
  • mlflow.system_metrics
  • mlflow.tensorflow
  • mlflow.tracing
  • mlflow.transformers
  • mlflow.types
  • mlflow.utils
  • mlflow.xgboost
  • mlflow.openai

See also the index of all functions and classes.

Log Levels

MLflow Python APIs log information during execution using the Python Logging API. You can configure the log level for MLflow logs using the following code snippet. Learn more about Python log levels at the Python language logging guide.

import logging

logger = logging.getLogger("mlflow")

# Set log level to debugging
logger.setLevel(logging.DEBUG)
Previous Next

© MLflow Project, a Series of LF Projects, LLC. All rights reserved.