"""
The ``mlflow.prophet`` module provides an API for logging and loading Prophet models.
This module exports univariate Prophet models in the following flavors:
Prophet (native) format
This is the main flavor that can be accessed with Prophet APIs.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and for batch auditing
of historical forecasts.
.. _Prophet:
https://facebook.github.io/prophet/docs/quick_start.html#python-api
"""
import json
import logging
import os
from typing import Any, Dict, Optional
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import _infer_signature_from_input_example
from mlflow.models.utils import _save_example
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
_CONDA_ENV_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_mlflow_conda_env,
_process_conda_env,
_process_pip_requirements,
_PythonEnv,
_validate_env_arguments,
)
from mlflow.utils.file_utils import get_total_file_size, write_to
from mlflow.utils.model_utils import (
_add_code_from_conf_to_system_path,
_get_flavor_configuration,
_validate_and_copy_code_paths,
_validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
FLAVOR_NAME = "prophet"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.pr"
_MODEL_TYPE_KEY = "model_type"
_logger = logging.getLogger(__name__)
[docs]def get_default_pip_requirements():
"""
:return: A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
that, at a minimum, contains these requirements.
"""
# Note: Prophet's whl build process will fail due to missing dependencies, defaulting
# to setup.py installation process.
# If a pystan installation error occurs, ensure gcc>=8 is installed in your environment.
# See: https://gcc.gnu.org/install/
return [_get_pinned_requirement("prophet")]
[docs]def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
pr_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Save a Prophet model to a path on the local file system.
:param pr_model: Prophet model (an instance of Prophet() forecaster that has been fit
on a temporal series.
:param path: Local path where the serialized model (as JSON) is to be saved.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
:param signature: an instance of the :py:class:`ModelSignature <mlflow.models.ModelSignature>`
class that describes the model's inputs and outputs. If not specified but an
``input_example`` is supplied, a signature will be automatically inferred
based on the supplied input example and model. To disable automatic signature
inference when providing an input example, set ``signature`` to ``False``.
To manually infer a model signature, call
:py:func:`infer_signature() <mlflow.models.infer_signature>` on datasets
with valid model inputs, such as a training dataset with the target column
omitted, and valid model outputs, like model predictions made on the training
dataset, for example:
.. code-block:: python
from mlflow.models import infer_signature
model = Prophet().fit(df)
train = model.history
predictions = model.predict(model.make_future_dataframe(30))
signature = infer_signature(train, predictions)
:param input_example: {{ input_example }}
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
"""
import prophet
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if signature is None and input_example is not None:
wrapped_model = _ProphetModelWrapper(pr_model)
signature = _infer_signature_from_input_example(input_example, wrapped_model)
elif signature is False:
signature = None
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
_save_model(pr_model, model_data_path)
model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.prophet",
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
**model_bin_kwargs,
)
flavor_conf = {
_MODEL_TYPE_KEY: pr_model.__class__.__name__,
**model_bin_kwargs,
}
mlflow_model.add_flavor(
FLAVOR_NAME,
prophet_version=prophet.__version__,
code=code_dir_subpath,
**flavor_conf,
)
if size := get_total_file_size(path):
mlflow_model.model_size_bytes = size
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
default_reqs = None
if pip_requirements is None:
# cannot use inferred requirements due to prophet's build process
# as the package installation of pystan requires Cython to be present
# in the path. Prophet's installation itself requires imports of
# existing libraries, preventing the execution of a batched pip install
# and instead using a a strictly defined list of dependencies.
# NOTE: if Prophet .whl build architecture is changed, this should be
# modified to a standard inferred approach.
default_reqs = get_default_pip_requirements()
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
pr_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Log a Prophet model as an MLflow artifact for the current run.
:param pr_model: Prophet model to be saved.
:param artifact_path: Run-relative artifact path.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param registered_model_name: This argument may change or be removed in a
future release without warning. If given, create a model
version under ``registered_model_name``, also creating a
registered model if one with the given name does not exist.
:param signature: an instance of the :py:class:`ModelSignature <mlflow.models.ModelSignature>`
class that describes the model's inputs and outputs. If not specified but an
``input_example`` is supplied, a signature will be automatically inferred
based on the supplied input example and model. To disable automatic signature
inference when providing an input example, set ``signature`` to ``False``.
To manually infer a model signature, call
:py:func:`infer_signature() <mlflow.models.infer_signature>` on datasets
with valid model inputs, such as a training dataset with the target column
omitted, and valid model outputs, like model predictions made on the training
dataset, for example:
.. code-block:: python
from mlflow.models import infer_signature
model = Prophet().fit(df)
train = model.history
predictions = model.predict(model.make_future_dataframe(30))
signature = infer_signature(train, predictions)
:param input_example: {{ input_example }}
:param await_registration_for: Number of seconds to wait for the model version
to finish being created and is in ``READY`` status.
By default, the function waits for five minutes.
Specify 0 or None to skip waiting.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.prophet,
registered_model_name=registered_model_name,
pr_model=pr_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
)
def _save_model(model, path):
from prophet.serialize import model_to_json
model_ser = model_to_json(model)
with open(path, "w") as f:
json.dump(model_ser, f)
def _load_model(path):
from prophet.serialize import model_from_json
with open(path) as f:
model = json.load(f)
return model_from_json(model)
def _load_pyfunc(path):
"""
Load PyFunc implementation for Prophet. Called by ``pyfunc.load_model``.
:param path: Local filesystem path to the MLflow Model with the ``prophet`` flavor.
"""
return _ProphetModelWrapper(_load_model(path))
[docs]def load_model(model_uri, dst_path=None):
"""
Load a Prophet model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:param dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
:return: A Prophet model instance
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
pr_model_path = os.path.join(
local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
)
return _load_model(pr_model_path)
class _ProphetModelWrapper:
def __init__(self, pr_model):
self.pr_model = pr_model
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
): # pylint: disable=unused-argument
"""
:param dataframe: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
return self.pr_model.predict(dataframe)