mlflow.mleap
The mlflow.mleap module provides an API for saving Spark MLLib models using the
MLeap persistence mechanism.
-
exception
mlflow.mleap.MLeapSerializationException(message, error_code=1, **kwargs)[source] Bases:
mlflow.exceptions.MlflowExceptionException thrown when a model or DataFrame cannot be serialized in MLeap format.
-
mlflow.mleap.add_to_model(mlflow_model, path, spark_model, sample_input)[source] Warning
mlflow.mleap.add_to_modelis deprecated since 2.6.0. This method will be removed in a future release. Usemlflow.onnxinstead.Note
This method requires all argument be specified by keyword.
Add the MLeap flavor to an existing MLflow model.
- Parameters
mlflow_model –
mlflow.models.Modelto which this flavor is being added.path – Path of the model to which this flavor is being added.
spark_model – Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers.
sample_input – Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference.
-
mlflow.mleap.log_model(spark_model, sample_input, artifact_path: Optional[str] = None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, metadata=None, registered_model_name=None, name: Optional[str] = None, params: Optional[dict] = None, tags: Optional[dict] = None, model_type: Optional[str] = None, step: int = 0, model_id: Optional[str] = None)[source] Warning
mlflow.mleap.log_modelis deprecated since 2.6.0. This method will be removed in a future release. Usemlflow.onnxinstead.Note
This method requires all argument be specified by keyword.
Log a Spark MLLib model in MLeap format as an MLflow artifact for the current run. The logged model will have the MLeap flavor.
Note
You cannot load the MLeap model flavor in Python; you must download it using the Java API method
downloadArtifacts(String runId)and load the model using the methodMLeapLoader.loadPipeline(String modelRootPath).- Parameters
spark_model – Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers.
sample_input – Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference.
artifact_path – Deprecated. Use name instead.
signature –
ModelSignaturedescribes model input and outputSchema. The model signature can beinferredfrom datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – {{ input_example }}
metadata – {{ metadata }}
registered_model_name – If given, create a model version under
registered_model_name, also creating a registered model if one with the given name does not exist.name – {{ name }}
params – {{ params }}
tags – {{ tags }}
model_type – {{ model_type }}
step – {{ step }}
model_id – {{ model_id }}
- Returns
A
ModelInfoinstance that contains the metadata of the logged model.
import mlflow import mlflow.mleap import pyspark from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import HashingTF, Tokenizer # training DataFrame training = spark.createDataFrame( [ (0, "a b c d e spark", 1.0), (1, "b d", 0.0), (2, "spark f g h", 1.0), (3, "hadoop mapreduce", 0.0), ], ["id", "text", "label"], ) # testing DataFrame test_df = spark.createDataFrame( [(4, "spark i j k"), (5, "l m n"), (6, "spark hadoop spark"), (7, "apache hadoop")], ["id", "text"], ) # Create an MLlib pipeline tokenizer = Tokenizer(inputCol="text", outputCol="words") hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") lr = LogisticRegression(maxIter=10, regParam=0.001) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) model = pipeline.fit(training) # log parameters mlflow.log_param("max_iter", 10) mlflow.log_param("reg_param", 0.001) # log the Spark MLlib model in MLeap format mlflow.mleap.log_model( spark_model=model, sample_input=test_df, artifact_path="mleap-model" )
-
mlflow.mleap.save_model(spark_model, sample_input, path, mlflow_model=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, metadata=None)[source] Warning
mlflow.mleap.save_modelis deprecated since 2.6.0. This method will be removed in a future release. Usemlflow.onnxinstead.Note
This method requires all argument be specified by keyword.
Save a Spark MLlib PipelineModel in MLeap format at a local path. The saved model will have the MLeap flavor.
Note
You cannot load the MLeap model flavor in Python; you must download it using the Java API method
downloadArtifacts(String runId)and load the model using the methodMLeapLoader.loadPipeline(String modelRootPath).- Parameters
spark_model – Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers.
sample_input – Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference.
path – Local path where the model is to be saved.
mlflow_model –
mlflow.models.Modelto which this flavor is being added.signature –
ModelSignaturedescribes model input and outputSchema. The model signature can beinferredfrom datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – {{ input_example }}
metadata – {{ metadata }}