mlflow.config
- mlflow.config.disable_system_metrics_logging()[source]
- Disable system metrics logging globally. - Calling this function will disable system metrics logging globally, but users can still opt in system metrics logging for individual runs by mlflow.start_run(log_system_metrics=True). 
- mlflow.config.enable_async_logging(enable=True)[source]
- Enable or disable async logging globally. - Parameters
- enable – bool, if True, enable async logging. If False, disable async logging. 
 
- mlflow.config.enable_system_metrics_logging()[source]
- Enable system metrics logging globally. - Calling this function will enable system metrics logging globally, but users can still opt out system metrics logging for individual runs by mlflow.start_run(log_system_metrics=False). 
- mlflow.config.get_registry_uri() str[source]
- Get the current registry URI. If none has been specified, defaults to the tracking URI. - Returns
- The registry URI. 
 - # Get the current model registry uri mr_uri = mlflow.get_registry_uri() print(f"Current model registry uri: {mr_uri}") # Get the current tracking uri tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}") # They should be the same assert mr_uri == tracking_uri - Current model registry uri: file:///.../mlruns Current tracking uri: file:///.../mlruns 
- mlflow.config.get_tracking_uri() str[source]
- Get the current tracking URI. This may not correspond to the tracking URI of the currently active run, since the tracking URI can be updated via - set_tracking_uri.- Returns
- The tracking URI. 
 - import mlflow # Get the current tracking uri tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}") - Current tracking uri: file:///.../mlruns 
- mlflow.config.is_tracking_uri_set()[source]
- Returns True if the tracking URI has been set, False otherwise. 
- mlflow.config.set_registry_uri(uri: str) None[source]
- Set the registry server URI. This method is especially useful if you have a registry server that’s different from the tracking server. - Parameters
- uri – An empty string, or a local file path, prefixed with - file:/. Data is stored locally at the provided file (or- ./mlrunsif empty). An HTTP URI like- https://my-tracking-server:5000or- http://my-oss-uc-server:8080. A Databricks workspace, provided as the string “databricks” or, to use a Databricks CLI profile, “databricks://<profileName>”.
 - import mflow # Set model registry uri, fetch the set uri, and compare # it with the tracking uri. They should be different mlflow.set_registry_uri("sqlite:////tmp/registry.db") mr_uri = mlflow.get_registry_uri() print(f"Current registry uri: {mr_uri}") tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}") # They should be different assert tracking_uri != mr_uri 
- mlflow.config.set_system_metrics_node_id(node_id)[source]
- Set the system metrics node id. - node_id is the identifier of the machine where the metrics are collected. This is useful in multi-node (distributed training) setup. 
- mlflow.config.set_system_metrics_samples_before_logging(samples)[source]
- Set the number of samples before logging system metrics. - Every time samples samples have been collected, the system metrics will be logged to mlflow. By default samples=1. 
- mlflow.config.set_system_metrics_sampling_interval(interval)[source]
- Set the system metrics sampling interval. - Every interval seconds, the system metrics will be collected. By default interval=10. 
- mlflow.config.set_tracking_uri(uri: Union[str, pathlib.Path]) None[source]
- Set the tracking server URI. This does not affect the currently active run (if one exists), but takes effect for successive runs. - Parameters
- uri – - An empty string, or a local file path, prefixed with - file:/. Data is stored locally at the provided file (or- ./mlrunsif empty).
- An HTTP URI like - https://my-tracking-server:5000.
- A Databricks workspace, provided as the string “databricks” or, to use a Databricks CLI profile, “databricks://<profileName>”. 
- A - pathlib.Pathinstance
 
 - import mlflow mlflow.set_tracking_uri("file:///tmp/my_tracking") tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}")