MLflow Plugins
MLflow's plugin architecture enables seamless integration with third-party tools and custom infrastructure. As a framework-agnostic platform, MLflow provides developer APIs for extending functionality across storage, authentication, execution backends, and model evaluation.
Quick Start
Installing and Using a Plugin
Try the built-in test plugin to see how plugins work:
# Clone MLflow and install example plugin
git clone https://github.com/mlflow/mlflow
cd mlflow
pip install -e tests/resources/mlflow-test-plugin
# Use the plugin with custom tracking URI scheme
MLFLOW_TRACKING_URI=file-plugin:$(PWD)/mlruns python examples/quickstart/mlflow_tracking.py
# Launch MLflow UI to view results
mlflow server --backend-store-uri ./mlruns
Open http://localhost:5000 to see your tracked experiment:

Plugins let you integrate MLflow with your existing infrastructure without modifying core MLflow code, ensuring smooth upgrades and maintenance.
Plugin Types & Use Cases
MLflow supports eight types of plugins, each addressing different integration needs:
Storage & Persistence
| Plugin Type | Purpose | Example Use Cases | 
|---|---|---|
| Tracking Store | Custom experiment data storage | Enterprise databases, cloud data warehouses | 
| Artifact Repository | Custom artifact storage | In-house blob storage, specialized file systems | 
| Model Registry Store | Custom model registry backend | Enterprise model catalogs, version control systems | 
Authentication & Headers
| Plugin Type | Purpose | Example Use Cases | 
|---|---|---|
| Request Auth Provider | Custom authentication | OAuth, API keys, certificate-based auth | 
| Request Header Provider | Custom HTTP headers | Environment identification, compliance headers | 
| Run Context Provider | Automatic run metadata | Git info, environment details, custom tags | 
Execution & Evaluation
| Plugin Type | Purpose | Example Use Cases | 
|---|---|---|
| Project Backend | Custom execution environments | Internal clusters, job schedulers, cloud platforms | 
| Model Evaluator | Custom evaluation metrics | Domain-specific validation, custom test suites | 
| Deployment | Custom serving platforms | Internal serving infrastructure, edge deployment | 
Developing Custom Plugins
Plugin Structure
Create a plugin as a standalone Python package:
# setup.py
from setuptools import setup
setup(
    name="my-mlflow-plugin",
    version="0.1.0",
    install_requires=["mlflow>=2.0.0"],
    entry_points={
        # Define plugin entry points
        "mlflow.tracking_store": "my-scheme=my_plugin.store:MyTrackingStore",
        "mlflow.artifact_repository": "my-scheme=my_plugin.artifacts:MyArtifactRepo",
        "mlflow.run_context_provider": "unused=my_plugin.context:MyContextProvider",
        "mlflow.request_auth_provider": "unused=my_plugin.auth:MyAuthProvider",
        "mlflow.model_evaluator": "my-evaluator=my_plugin.evaluator:MyEvaluator",
        "mlflow.project_backend": "my-backend=my_plugin.backend:MyBackend",
        "mlflow.deployments": "my-target=my_plugin.deployment",
        "mlflow.app": "my-app=my_plugin.app:create_app",
    },
)
Storage Plugins
- Tracking Store
- Artifact Repository
- Model Registry Store
# my_plugin/store.py
from mlflow.store.tracking.abstract_store import AbstractStore
class MyTrackingStore(AbstractStore):
    """Custom tracking store for scheme 'my-scheme://'"""
    def __init__(self, store_uri):
        super().__init__()
        self.store_uri = store_uri
        # Initialize your custom storage backend
    def create_experiment(self, name, artifact_location=None, tags=None):
        # Implement experiment creation logic
        pass
    def log_metric(self, run_id, metric):
        # Implement metric logging logic
        pass
    def log_param(self, run_id, param):
        # Implement parameter logging logic
        pass
    # Implement other required AbstractStore methods...
# my_plugin/artifacts.py
from mlflow.store.artifact.artifact_repo import ArtifactRepository
class MyArtifactRepo(ArtifactRepository):
    """Custom artifact repository for scheme 'my-scheme://'"""
    def __init__(self, artifact_uri):
        super().__init__(artifact_uri)
        # Initialize your artifact storage backend
    def log_artifact(self, local_file, artifact_path=None):
        # Upload file to your storage system
        pass
    def log_artifacts(self, local_dir, artifact_path=None):
        # Upload directory to your storage system
        pass
    def list_artifacts(self, path=None):
        # List artifacts in your storage system
        pass
    def download_artifacts(self, artifact_path, dst_path=None):
        # Download artifacts from your storage system
        pass
# my_plugin/registry.py
from mlflow.store.model_registry.abstract_store import AbstractStore
class MyModelRegistryStore(AbstractStore):
    """Custom model registry store for scheme 'my-scheme://'"""
    def __init__(self, store_uri):
        super().__init__()
        self.store_uri = store_uri
        # Initialize your model registry backend
    def create_registered_model(self, name, tags=None, description=None):
        # Implement model registration logic
        pass
    def create_model_version(
        self, name, source, run_id=None, tags=None, run_link=None, description=None
    ):
        # Implement model version creation logic
        pass
    def get_registered_model(self, name):
        # Implement model retrieval logic
        pass
    # Implement other required AbstractStore methods...
Authentication Plugins
- Request Auth Provider
- Run Context Provider
- Request Header Provider
# my_plugin/auth.py
from mlflow.tracking.request_auth.abstract_request_auth_provider import (
    RequestAuthProvider,
)
class MyAuthProvider(RequestAuthProvider):
    """Custom authentication provider"""
    def get_name(self):
        return "my_auth_provider"
    def get_auth(self):
        # Return authentication object for HTTP requests
        # Can be anything that requests.auth accepts
        return MyCustomAuth()
class MyCustomAuth:
    """Custom authentication class"""
    def __call__(self, request):
        # Add authentication headers to request
        token = self._get_token()
        request.headers["Authorization"] = f"Bearer {token}"
        return request
    def _get_token(self):
        # Implement token retrieval logic
        # E.g., read from file, environment, or API call
        pass
Usage:
export MLFLOW_TRACKING_AUTH=my_auth_provider
python your_mlflow_script.py
# my_plugin/context.py
from mlflow.tracking.context.abstract_context import RunContextProvider
class MyContextProvider(RunContextProvider):
    """Automatically add custom tags to runs"""
    def in_context(self):
        # Return True if this context applies
        return True
    def tags(self):
        # Return dictionary of tags to add to runs
        return {
            "environment": self._get_environment(),
            "team": self._get_team(),
            "cost_center": self._get_cost_center(),
        }
    def _get_environment(self):
        # Detect environment (dev/staging/prod)
        pass
    def _get_team(self):
        # Get team from environment or config
        pass
    def _get_cost_center(self):
        # Get cost center for billing
        pass
# my_plugin/headers.py
from mlflow.tracking.request_header.abstract_request_header_provider import (
    RequestHeaderProvider,
)
class MyHeaderProvider(RequestHeaderProvider):
    """Add custom headers to MLflow requests"""
    def in_context(self):
        return True
    def request_headers(self):
        return {
            "X-Client-Version": self._get_client_version(),
            "X-Environment": self._get_environment(),
            "X-User-Agent": "MyOrganization-MLflow-Client",
        }
    def _get_client_version(self):
        # Return your client version
        return "1.0.0"
    def _get_environment(self):
        # Detect environment context
        return os.getenv("DEPLOYMENT_ENV", "development")
Execution Plugins
Project Backend Plugin
# my_plugin/backend.py
from mlflow.projects.backend import AbstractBackend
from mlflow.projects.submitted_run import SubmittedRun
class MyBackend(AbstractBackend):
    """Custom execution backend for MLflow Projects"""
    def run(
        self,
        project_uri,
        entry_point,
        parameters,
        version,
        backend_config,
        tracking_uri,
        experiment_id,
    ):
        """Execute project on custom infrastructure"""
        # Parse backend configuration
        cluster_config = backend_config.get("cluster_config", {})
        # Submit job to your execution system
        job_id = self._submit_job(
            project_uri=project_uri,
            entry_point=entry_point,
            parameters=parameters,
            cluster_config=cluster_config,
        )
        # Return SubmittedRun for monitoring
        return MySubmittedRun(job_id, tracking_uri)
    def _submit_job(self, project_uri, entry_point, parameters, cluster_config):
        # Implement job submission to your infrastructure
        # Return job ID for monitoring
        pass
class MySubmittedRun(SubmittedRun):
    """Handle for submitted run"""
    def __init__(self, job_id, tracking_uri):
        self.job_id = job_id
        self.tracking_uri = tracking_uri
        super().__init__()
    def wait(self):
        # Wait for job completion and return success status
        return self._poll_job_status()
    def cancel(self):
        # Cancel the running job
        self._cancel_job()
    def get_status(self):
        # Get current job status
        return self._get_job_status()
Model Evaluation Plugin
# my_plugin/evaluator.py
from mlflow.models.evaluation import ModelEvaluator
from mlflow.models import EvaluationResult
class MyEvaluator(ModelEvaluator):
    """Custom model evaluator"""
    def can_evaluate(self, *, model_type, evaluator_config, **kwargs):
        """Check if this evaluator can handle the model type"""
        supported_types = ["classifier", "regressor"]
        return model_type in supported_types
    def evaluate(
        self, *, model, model_type, dataset, run_id, evaluator_config, **kwargs
    ):
        """Perform custom evaluation"""
        # Get predictions
        predictions = model.predict(dataset.features_data)
        # Compute custom metrics
        metrics = self._compute_custom_metrics(
            predictions, dataset.labels_data, evaluator_config
        )
        # Generate custom artifacts
        artifacts = self._generate_artifacts(predictions, dataset, evaluator_config)
        return EvaluationResult(metrics=metrics, artifacts=artifacts)
    def _compute_custom_metrics(self, predictions, labels, config):
        # Implement domain-specific metrics
        return {
            "custom_score": self._calculate_custom_score(predictions, labels),
            "business_metric": self._calculate_business_metric(predictions, labels),
        }
    def _generate_artifacts(self, predictions, dataset, config):
        # Generate custom plots, reports, etc.
        return {}
Popular Community Plugins
- Storage Solutions
- Model Deployment
- Model Evaluation
- Execution Backends
- Enterprise Solutions
SQL Server Plugin
Store artifacts directly in SQL Server databases:
pip install mlflow[sqlserver]
import mlflow
# Use SQL Server as artifact store
db_uri = "mssql+pyodbc://user:pass@host:port/db?driver=ODBC+Driver+17+for+SQL+Server"
mlflow.create_experiment("sql_experiment", artifact_location=db_uri)
with mlflow.start_run():
    mlflow.onnx.log_model(model, name="model")  # Stored as BLOB in SQL Server
Alibaba Cloud OSS Plugin
Integrate with Aliyun Object Storage Service:
pip install mlflow[aliyun-oss]
import os
import mlflow
# Configure OSS credentials
os.environ["MLFLOW_OSS_ENDPOINT_URL"] = "https://oss-region.aliyuncs.com"
os.environ["MLFLOW_OSS_KEY_ID"] = "your_access_key"
os.environ["MLFLOW_OSS_KEY_SECRET"] = "your_secret_key"
# Use OSS as artifact store
mlflow.create_experiment("oss_experiment", artifact_location="oss://bucket/path")
XetHub Plugin
Use XetHub for versioned artifact storage:
pip install mlflow[xethub]
import mlflow
# Authenticate with XetHub (via CLI or environment variables)
mlflow.create_experiment(
    "xet_experiment", artifact_location="xet://username/repo/branch"
)
Elasticsearch Plugin
Use Elasticsearch for experiment tracking:
pip install mlflow-elasticsearchstore
| Plugin | Target Platform | Installation | 
|---|---|---|
| mlflow-redisai | RedisAI | pip install mlflow-redisai | 
| mlflow-torchserve | TorchServe | pip install mlflow-torchserve | 
| mlflow-ray-serve | Ray Serve | pip install mlflow-ray-serve | 
| mlflow-azureml | Azure ML | Built-in with Azure ML | 
| oci-mlflow | Oracle Cloud | pip install oci-mlflow | 
Example deployment usage:
import mlflow.deployments
# Deploy to custom target
client = mlflow.deployments.get_deploy_client("redisai")
client.create_deployment(
    name="my_model", model_uri="models:/MyModel/1", config={"device": "GPU"}
)
Giskard Plugin
Comprehensive model validation and bias detection:
pip install mlflow-giskard
import mlflow
# Evaluate with Giskard
result = mlflow.evaluate(
    model,
    eval_data,
    evaluators=["giskard"],
    evaluator_config={
        "giskard": {
            "test_suite": "full_suite",
            "bias_tests": True,
            "performance_tests": True,
        }
    },
)
Detects vulnerabilities:
- Performance bias
- Ethical bias
- Data leakage
- Overconfidence/Underconfidence
- Spurious correlations
Trubrics Plugin
Advanced model validation framework:
pip install trubrics-sdk
| Plugin | Platform | Use Case | 
|---|---|---|
| mlflow-yarn | Hadoop/YARN | Big data processing clusters | 
| oci-mlflow | Oracle Cloud | Oracle Cloud Infrastructure | 
Example usage:
# Run MLflow project on YARN
mlflow run . --backend yarn --backend-config yarn-config.json
JFrog Artifactory Plugin
Enterprise artifact governance:
pip install mlflow[jfrog]
Key Features:
- Artifacts stored in JFrog Artifactory
- Full lifecycle management
- Enterprise security and compliance
- Integration with JFrog platform tools
Setup:
export ARTIFACTORY_AUTH_TOKEN="your_token"
mlflow server \
  --host 0.0.0.0 \
  --port 5000 \
  --artifacts-destination "artifactory://artifactory.company.com/artifactory/ml-models"
Usage:
import mlflow
from transformers import pipeline
mlflow.set_tracking_uri("http://your-mlflow-server:5000")
classifier = pipeline("sentiment-analysis", model="bert-base-uncased")
with mlflow.start_run():
    mlflow.transformers.log_model(
        transformers_model=classifier, name="model"
    )  # Automatically stored in JFrog Artifactory
Configuration:
# Optional: Use HTTP instead of HTTPS
export ARTIFACTORY_NO_SSL=true
# Optional: Enable debug logging
export ARTIFACTORY_DEBUG=true
# Optional: Skip artifact deletion during garbage collection
export ARTIFACTORY_ARTIFACTS_DELETE_SKIP=true
Testing Your Plugin
- Unit Testing
- Integration Testing
- Performance Testing
# tests/test_my_plugin.py
import pytest
import mlflow
from my_plugin.store import MyTrackingStore
class TestMyTrackingStore:
    def setup_method(self):
        self.store = MyTrackingStore("my-scheme://test")
    def test_create_experiment(self):
        experiment_id = self.store.create_experiment("test_exp")
        assert experiment_id is not None
    def test_log_metric(self):
        experiment_id = self.store.create_experiment("test_exp")
        run = self.store.create_run(experiment_id, "user", "test_run")
        metric = mlflow.entities.Metric("accuracy", 0.95, 12345, 0)
        self.store.log_metric(run.info.run_id, metric)
        # Verify metric was logged correctly
        stored_run = self.store.get_run(run.info.run_id)
        assert "accuracy" in stored_run.data.metrics
        assert stored_run.data.metrics["accuracy"] == 0.95
    def test_log_artifact(self):
        # Test artifact logging functionality
        pass
# tests/test_integration.py
import tempfile
import mlflow
from my_plugin import setup_test_environment
def test_end_to_end_workflow():
    with setup_test_environment():
        # Set tracking URI to use your plugin
        mlflow.set_tracking_uri("my-scheme://test")
        # Test full MLflow workflow
        with mlflow.start_run():
            mlflow.log_param("alpha", 0.5)
            mlflow.log_metric("rmse", 0.8)
            # Create and log a simple model
            with tempfile.NamedTemporaryFile() as f:
                f.write(b"model data")
                f.flush()
                mlflow.log_artifact(f.name, "model")
        # Verify everything was stored correctly
        runs = mlflow.search_runs()
        assert len(runs) == 1
        assert runs.iloc[0]["params.alpha"] == "0.5"
        assert runs.iloc[0]["metrics.rmse"] == 0.8
# tests/test_performance.py
import time
import mlflow
import pytest
import threading
from my_plugin.store import MyTrackingStore
class TestPerformance:
    def test_bulk_logging_performance(self):
        store = MyTrackingStore("my-scheme://perf-test")
        experiment_id = store.create_experiment("perf_test")
        run = store.create_run(experiment_id, "user", "perf_run")
        # Test bulk metric logging
        start_time = time.time()
        for i in range(1000):
            metric = mlflow.entities.Metric(f"metric_{i}", i * 0.1, 12345, i)
            store.log_metric(run.info.run_id, metric)
        elapsed = time.time() - start_time
        assert elapsed < 10.0  # Should complete within 10 seconds
        # Verify all metrics were logged
        stored_run = store.get_run(run.info.run_id)
        assert len(stored_run.data.metrics) == 1000
    def test_concurrent_access(self):
        store = MyTrackingStore("my-scheme://concurrent-test")
        results = []
        def create_experiment(name):
            exp_id = store.create_experiment(f"concurrent_{name}")
            results.append(exp_id)
        threads = [
            threading.Thread(target=create_experiment, args=[i]) for i in range(10)
        ]
        for t in threads:
            t.start()
        for t in threads:
            t.join()
        assert len(set(results)) == 10  # All unique experiment IDs
Distribution & Publishing
Package Structure
my-mlflow-plugin/
├── setup.py                    # Package configuration
├── README.md                   # Plugin documentation
├── my_plugin/
│   ├── __init__.py
│   ├── store.py               # Tracking store implementation
│   ├── artifacts.py           # Artifact repository implementation
│   ├── auth.py                # Authentication provider
│   └── evaluator.py           # Model evaluator
├── tests/
│   ├── test_store.py
│   ├── test_artifacts.py
│   └── test_integration.py
└── examples/
    └── example_usage.py
Publishing to PyPI
# Build distribution packages
python setup.py sdist bdist_wheel
# Upload to PyPI
pip install twine
twine upload dist/*
Documentation Template
# My MLflow Plugin
## Installation
```bash
pip install my-mlflow-plugin
Configuration
export MY_PLUGIN_CONFIG="value"
Usage
import mlflow
mlflow.set_tracking_uri("my-scheme://config")
Features
- Feature 1
- Feature 2
Examples
See examples/ directory for complete usage examples.
Best Practices
Plugin Development
- Follow MLflow interfaces - Implement all required abstract methods
- Handle errors gracefully - Provide clear error messages for configuration issues
- Support authentication - Integrate with existing credential systems
- Add comprehensive logging - Help users debug configuration problems
- Version compatibility - Test against multiple MLflow versions
Performance Optimization
- Batch operations - Implement efficient bulk logging when possible
- Connection pooling - Reuse connections to external systems
- Async operations - Use async I/O for storage operations when beneficial
- Caching - Cache frequently accessed metadata
Security Considerations
- Credential management - Never log or expose sensitive credentials
- Input validation - Validate all user inputs and URIs
- Access controls - Respect existing authentication and authorization
- Secure communication - Use TLS/SSL for network communications
Testing Strategy
- Unit tests - Test individual plugin components
- Integration tests - Test full workflows with MLflow
- Performance tests - Verify acceptable performance characteristics
- Compatibility tests - Test with different MLflow versions
Ready to extend MLflow? Start with the example test plugin to see all plugin types in action, then build your custom integration!