Source code for mlflow.tracing.destination

from __future__ import annotations

from contextvars import ContextVar
from dataclasses import dataclass

from mlflow.exceptions import MlflowException
from mlflow.utils.annotations import experimental


class UserTraceDestinationRegistry:
    def __init__(self):
        self._global_value = None
        self._context_local_value = ContextVar("mlflow_trace_destination", default=None)

    def get(self) -> TraceDestination | None:
        """First check the context-local value, then the global value."""
        if local_destination := self._context_local_value.get():
            return local_destination
        return self._global_value

    def set(self, value, context_local: bool = False):
        if context_local:
            self._context_local_value.set(value)
        else:
            self._global_value = value

    def reset(self):
        self._global_value = None
        self._context_local_value.set(None)


[docs]@experimental(version="2.21.0") @dataclass class TraceDestination: """A configuration object for specifying the destination of trace data.""" @property def type(self) -> str: """Type of the destination.""" raise NotImplementedError
[docs]@experimental(version="2.21.0") @dataclass class MlflowExperiment(TraceDestination): """ A destination representing an MLflow experiment. By setting this destination in the :py:func:`mlflow.tracing.set_destination` function, MLflow will log traces to the specified experiment. Attributes: experiment_id: The ID of the experiment to log traces to. If not specified, the current active experiment will be used. """ experiment_id: str | None = None @property def type(self) -> str: return "experiment"
[docs]@experimental(version="2.22.0") @dataclass class Databricks(TraceDestination): """ A destination representing a Databricks tracing server. By setting this destination in the :py:func:`mlflow.tracing.set_destination` function, MLflow will log traces to the specified experiment. If neither experiment_id nor experiment_name is specified, an active experiment when traces are created will be used as the destination. If both are specified, they must refer to the same experiment. Attributes: experiment_id: The ID of the experiment to log traces to. experiment_name: The name of the experiment to log traces to. """ experiment_id: str | None = None experiment_name: str | None = None def __post_init__(self): if self.experiment_id is not None: self.experiment_id = str(self.experiment_id) if self.experiment_name is not None: from mlflow.tracking._tracking_service.utils import _get_store # NB: Use store directly rather than fluent API to avoid dependency on MLflowClient experiment_id = _get_store().get_experiment_by_name(self.experiment_name).experiment_id if self.experiment_id is not None and self.experiment_id != experiment_id: raise MlflowException.invalid_parameter_value( "experiment_id and experiment_name must refer to the same experiment" ) self.experiment_id = experiment_id @property def type(self) -> str: return "databricks"