"""
The ``mlflow.prophet`` module provides an API for logging and loading Prophet models.
This module exports univariate Prophet models in the following flavors:
Prophet (native) format
    This is the main flavor that can be accessed with Prophet APIs.
:py:mod:`mlflow.pyfunc`
    Produced for use by generic pyfunc-based deployment tools and for batch auditing
    of historical forecasts.
.. _Prophet:
    https://facebook.github.io/prophet/docs/quick_start.html#python-api
"""
import json
import logging
import os
from typing import Any
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import _infer_signature_from_input_example
from mlflow.models.utils import _save_example
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
    _CONDA_ENV_FILE_NAME,
    _CONSTRAINTS_FILE_NAME,
    _PYTHON_ENV_FILE_NAME,
    _REQUIREMENTS_FILE_NAME,
    _mlflow_conda_env,
    _process_conda_env,
    _process_pip_requirements,
    _PythonEnv,
    _validate_env_arguments,
)
from mlflow.utils.file_utils import get_total_file_size, write_to
from mlflow.utils.model_utils import (
    _add_code_from_conf_to_system_path,
    _get_flavor_configuration,
    _validate_and_copy_code_paths,
    _validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
FLAVOR_NAME = "prophet"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.pr"
_MODEL_TYPE_KEY = "model_type"
_logger = logging.getLogger(__name__)
[docs]def get_default_pip_requirements():
    """
    Returns:
        A list of default pip requirements for MLflow Models produced by this flavor.
        Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
        that, at a minimum, contains these requirements.
    """
    # Note: Prophet's whl build process will fail due to missing dependencies, defaulting
    # to setup.py installation process.
    # If a pystan installation error occurs, ensure gcc>=8 is installed in your environment.
    # See: https://gcc.gnu.org/install/
    return [_get_pinned_requirement("prophet")] 
[docs]def get_default_conda_env():
    """
    Returns:
        The default Conda environment for MLflow Models produced by calls to
        :func:`save_model()` and :func:`log_model()`.
    """
    return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements()) 
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
    pr_model,
    path,
    conda_env=None,
    code_paths=None,
    mlflow_model=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    pip_requirements=None,
    extra_pip_requirements=None,
    metadata=None,
):
    """
    Save a Prophet model to a path on the local file system.
    Args:
        pr_model: Prophet model (an instance of Prophet() forecaster that has been fit
            on a temporal series.
        path: Local path where the serialized model (as JSON) is to be saved.
        conda_env: {{ conda_env }}
        code_paths: {{ code_paths }}
        mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
        signature: an instance of the :py:class:`ModelSignature <mlflow.models.ModelSignature>`
            class that describes the model's inputs and outputs. If not specified but an
            ``input_example`` is supplied, a signature will be automatically inferred
            based on the supplied input example and model. To disable automatic signature
            inference when providing an input example, set ``signature`` to ``False``.
            To manually infer a model signature, call
            :py:func:`infer_signature() <mlflow.models.infer_signature>` on datasets
            with valid model inputs, such as a training dataset with the target column
            omitted, and valid model outputs, like model predictions made on the training
            dataset, for example:
            .. code-block:: python
                from mlflow.models import infer_signature
                model = Prophet().fit(df)
                train = model.history
                predictions = model.predict(model.make_future_dataframe(30))
                signature = infer_signature(train, predictions)
        input_example: {{ input_example }}
        pip_requirements: {{ pip_requirements }}
        extra_pip_requirements: {{ extra_pip_requirements }}
        metadata: {{ metadata }}
    """
    import prophet
    _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
    path = os.path.abspath(path)
    _validate_and_prepare_target_save_path(path)
    code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
    if mlflow_model is None:
        mlflow_model = Model()
    saved_example = _save_example(mlflow_model, input_example, path)
    if signature is None and saved_example is not None:
        wrapped_model = _ProphetModelWrapper(pr_model)
        signature = _infer_signature_from_input_example(saved_example, wrapped_model)
    elif signature is False:
        signature = None
    if signature is not None:
        mlflow_model.signature = signature
    if metadata is not None:
        mlflow_model.metadata = metadata
    model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
    _save_model(pr_model, model_data_path)
    model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
    pyfunc.add_to_model(
        mlflow_model,
        loader_module="mlflow.prophet",
        conda_env=_CONDA_ENV_FILE_NAME,
        python_env=_PYTHON_ENV_FILE_NAME,
        code=code_dir_subpath,
        **model_bin_kwargs,
    )
    flavor_conf = {
        _MODEL_TYPE_KEY: pr_model.__class__.__name__,
        **model_bin_kwargs,
    }
    mlflow_model.add_flavor(
        FLAVOR_NAME,
        prophet_version=prophet.__version__,
        code=code_dir_subpath,
        **flavor_conf,
    )
    if size := get_total_file_size(path):
        mlflow_model.model_size_bytes = size
    mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
    if conda_env is None:
        default_reqs = None
        if pip_requirements is None:
            # cannot use inferred requirements due to prophet's build process
            # as the package installation of pystan requires Cython to be present
            # in the path. Prophet's installation itself requires imports of
            # existing libraries, preventing the execution of a batched pip install
            # and instead using a a strictly defined list of dependencies.
            # NOTE: if Prophet .whl build architecture is changed, this should be
            # modified to a standard inferred approach.
            default_reqs = get_default_pip_requirements()
        conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
            default_reqs,
            pip_requirements,
            extra_pip_requirements,
        )
    else:
        conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
    with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
        yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
    if pip_constraints:
        write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
    write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
    _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME)) 
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
    pr_model,
    artifact_path: str | None = None,
    conda_env=None,
    code_paths=None,
    registered_model_name=None,
    signature: ModelSignature = None,
    input_example: ModelInputExample = None,
    await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
    pip_requirements=None,
    extra_pip_requirements=None,
    metadata=None,
    name: str | None = None,
    params: dict[str, Any] | None = None,
    tags: dict[str, Any] | None = None,
    model_type: str | None = None,
    step: int = 0,
    model_id: str | None = None,
):
    """
    Logs a Prophet model as an MLflow artifact for the current run.
    Args:
        pr_model: Prophet model to be saved.
        artifact_path: Deprecated. Use `name` instead.
        conda_env: {{ conda_env }}
        code_paths: {{ code_paths }}
        registered_model_name: If given, create a model
            version under ``registered_model_name``, also creating a
            registered model if one with the given name does not exist.
        signature: An instance of the :py:class:`ModelSignature <mlflow.models.ModelSignature>`
            class that describes the model's inputs and outputs. If not specified but an
            ``input_example`` is supplied, a signature will be automatically inferred
            based on the supplied input example and model. To disable automatic signature
            inference when providing an input example, set ``signature`` to ``False``.
            To manually infer a model signature, call
            :py:func:`infer_signature() <mlflow.models.infer_signature>` on datasets
            with valid model inputs, such as a training dataset with the target column
            omitted, and valid model outputs, like model predictions made on the training
            dataset, for example:
            .. code-block:: python
                from mlflow.models import infer_signature
                model = Prophet().fit(df)
                train = model.history
                predictions = model.predict(model.make_future_dataframe(30))
                signature = infer_signature(train, predictions)
        input_example: {{ input_example }}
        await_registration_for: Number of seconds to wait for the model version
            to finish being created and is in ``READY`` status.
            By default, the function waits for five minutes.
            Specify 0 or None to skip waiting.
        pip_requirements: {{ pip_requirements }}
        extra_pip_requirements: {{ extra_pip_requirements }}
        metadata: {{ metadata }}
        name: {{ name }}
        params: {{ params }}
        tags: {{ tags }}
        model_type: {{ model_type }}
        step: {{ step }}
        model_id: {{ model_id }}
    Returns:
        A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
        metadata of the logged model.
    """
    return Model.log(
        artifact_path=artifact_path,
        name=name,
        flavor=mlflow.prophet,
        registered_model_name=registered_model_name,
        pr_model=pr_model,
        conda_env=conda_env,
        code_paths=code_paths,
        signature=signature,
        input_example=input_example,
        await_registration_for=await_registration_for,
        pip_requirements=pip_requirements,
        extra_pip_requirements=extra_pip_requirements,
        metadata=metadata,
        params=params,
        tags=tags,
        model_type=model_type,
        step=step,
        model_id=model_id,
    ) 
def _save_model(model, path):
    from prophet.serialize import model_to_json
    model_ser = model_to_json(model)
    with open(path, "w") as f:
        json.dump(model_ser, f)
def _load_model(path):
    from prophet.serialize import model_from_json
    with open(path) as f:
        model = json.load(f)
    return model_from_json(model)
def _load_pyfunc(path):
    """
    Loads PyFunc implementation for Prophet. Called by ``pyfunc.load_model``.
    Args:
        path: Local filesystem path to the MLflow Model with the ``prophet`` flavor.
    """
    return _ProphetModelWrapper(_load_model(path))
[docs]def load_model(model_uri, dst_path=None):
    """
    Load a Prophet model from a local file or a run.
    Args:
        model_uri: The location, in URI format, of the MLflow model. For example:
            - ``/Users/me/path/to/local/model``
            - ``relative/path/to/local/model``
            - ``s3://my_bucket/path/to/model``
            - ``runs:/<mlflow_run_id>/run-relative/path/to/model``
            For more information about supported URI schemes, see
            `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
            artifact-locations>`_.
        dst_path: The local filesystem path to which to download the model artifact.
            This directory must already exist. If unspecified, a local output
            path will be created.
    Returns:
        A Prophet model instance
    """
    local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
    flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
    _add_code_from_conf_to_system_path(local_model_path, flavor_conf)
    pr_model_path = os.path.join(
        local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
    )
    return _load_model(pr_model_path) 
class _ProphetModelWrapper:
    def __init__(self, pr_model):
        self.pr_model = pr_model
    def get_raw_model(self):
        """
        Returns the underlying model.
        """
        return self.pr_model
    def predict(self, dataframe, params: dict[str, Any] | None = None):
        """
        Args:
            dataframe: Model input data.
            params: Additional parameters to pass to the model for inference.
        Returns:
            Model predictions.
        """
        return self.pr_model.predict(dataframe)