mlflow.pmdarima
The mlflow.pmdarima module provides an API for logging and loading pmdarima models.
This module exports univariate pmdarima models in the following formats:
- Pmdarima format
Serialized instance of a
pmdarimamodel using pickle.mlflow.pyfuncProduced for use by generic pyfunc-based deployment tools and for batch auditing of historical forecasts.
import pandas as pd import mlflow import mlflow.pyfunc import pmdarima from pmdarima import auto_arima # Define a custom model class class PmdarimaWrapper(mlflow.pyfunc.PythonModel): def load_context(self, context): self.model = context.artifacts["model"] def predict(self, context, model_input): return self.model.predict(n_periods=model_input.shape[0]) # Specify locations of source data and the model artifact SOURCE_DATA = "https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv" ARTIFACT_PATH = "model" # Read data and recode columns sales_data = pd.read_csv(SOURCE_DATA) sales_data.rename(columns={"y": "sales", "ds": "date"}, inplace=True) # Split the data into train/test train_size = int(0.8 * len(sales_data)) train, _ = sales_data[:train_size], sales_data[train_size:] # Create the model model = pmdarima.auto_arima(train["sales"], seasonal=True, m=12) # Log the model with mlflow.start_run(): wrapper = PmdarimaWrapper() mlflow.pyfunc.log_model( name="model", python_model=wrapper, artifacts={"model": mlflow.pyfunc.model_to_dict(model)}, )
- mlflow.pmdarima.get_default_conda_env()[source]
- Returns
The default Conda environment for MLflow Models produced by calls to
save_model()andlog_model().
- mlflow.pmdarima.get_default_pip_requirements()[source]
- Returns
A list of default pip requirements for MLflow Models produced by this flavor. Calls to
save_model()andlog_model()produce a pip environment that, at a minimum, contains these requirements.
- mlflow.pmdarima.load_model(model_uri, dst_path=None)[source]
Load a
pmdarimaARIMAmodel orPipelineobject from a local file or a run.- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/modelrelative/path/to/local/models3://my_bucket/path/to/modelruns:/<mlflow_run_id>/run-relative/path/to/modelmlflow-artifacts:/path/to/model
For more information about supported URI schemes, see Referencing Artifacts.
dst_path – The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created.
- Returns
A
pmdarimamodel instance
import pandas as pd import mlflow from mlflow.models import infer_signature import pmdarima from pmdarima.metrics import smape # Specify locations of source data and the model artifact SOURCE_DATA = "https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv" ARTIFACT_PATH = "model" # Read data and recode columns sales_data = pd.read_csv(SOURCE_DATA) sales_data.rename(columns={"y": "sales", "ds": "date"}, inplace=True) # Split the data into train/test train_size = int(0.8 * len(sales_data)) train = sales_data[:train_size] test = sales_data[train_size:] with mlflow.start_run(): # Create the model model = pmdarima.auto_arima(train["sales"], seasonal=True, m=12) # Calculate metrics prediction = model.predict(n_periods=len(test)) metrics = {"smape": smape(test["sales"], prediction)} # Infer signature input_sample = pd.DataFrame(train["sales"]) output_sample = pd.DataFrame(model.predict(n_periods=5)) signature = infer_signature(input_sample, output_sample) # Log model input_example = input_sample.head() model_info = mlflow.pmdarima.log_model( model, name=ARTIFACT_PATH, signature=signature, input_example=input_example ) # Load the model loaded_model = mlflow.pmdarima.load_model(model_info.model_uri) # Forecast for the next 60 days forecast = loaded_model.predict(n_periods=60) print(f"forecast: {forecast}")
- mlflow.pmdarima.log_model(pmdarima_model, artifact_path: str | None = None, conda_env=None, code_paths=None, registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, await_registration_for=300, pip_requirements=None, extra_pip_requirements=None, metadata=None, name: str | None = None, params: dict[str, typing.Any] | None = None, tags: dict[str, typing.Any] | None = None, model_type: str | None = None, step: int = 0, model_id: str | None = None, **kwargs)[source]
Logs a
pmdarimaARIMAorPipelineobject as an MLflow artifact for the current run.- Parameters
pmdarima_model – pmdarima
ARIMAorPipelinemodel that has beenfiton a temporal series.artifact_path – Deprecated. Use name instead.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in get_default_conda_env(). If
None, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()is added to the model. If the requirement inference fails, it falls back to using get_default_pip_requirements. pip requirements fromconda_envare written to a piprequirements.txtfile and the full conda environment is written toconda.yaml. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "pmdarima==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
For a detailed explanation of
code_pathsfunctionality, recommended usage patterns and limitations, see the code_paths usage guide.registered_model_name – If given, create a model version under
registered_model_name, also creating a registered model if one with the given name does not exist.signature –
an instance of the
ModelSignatureclass that describes the model’s inputs and outputs. If not specified but aninput_exampleis supplied, a signature will be automatically inferred based on the supplied input example and model. To disable automatic signature inference when providing an input example, setsignaturetoFalse. To manually infer a model signature, callinfer_signature()on datasets with valid model inputs, such as a training dataset with the target column omitted, and valid model outputs, like model predictions made on the training dataset, for example:from mlflow.models import infer_signature model = pmdarima.auto_arima(data) predictions = model.predict(n_periods=30, return_conf_int=False) signature = infer_signature(data, predictions)
Warning
if utilizing confidence interval generation in the
predictmethod of apmdarimamodel (return_conf_int=True), the signature will not be inferred due to the complex tuple return type when using the nativeARIMA.predict()API.infer_schemawill function correctly if using thepyfuncflavor of the model, though.input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signatureparameter isNone, the input example is used to infer a model signature.await_registration_for – Number of seconds to wait for the model version to finish being created and is in
READYstatus. By default, the function waits for five minutes. Specify 0 or None to skip waiting.pip_requirements – Either an iterable of pip requirement strings (e.g.
["pmdarima", "-r requirements.txt", "-c constraints.txt"]) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"). If provided, this describes the environment this model should be run in. IfNone, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()from the current software environment. If the requirement inference fails, it falls back to using get_default_pip_requirements. Both requirements and constraints are automatically parsed and written torequirements.txtandconstraints.txtfiles, respectively, and stored as part of the model. Requirements are also written to thepipsection of the model’s conda environment (conda.yaml) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txtandconstraints.txtfiles, respectively, and stored as part of the model. Requirements are also written to thepipsection of the model’s conda environment (conda.yaml) file.Warning
The following arguments can’t be specified at the same time:
conda_envpip_requirementsextra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirementsandextra_pip_requirements.metadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
name – Model name.
params – A dictionary of parameters to log with the model.
tags – A dictionary of tags to log with the model.
model_type – The type of the model.
step – The step at which to log the model outputs and metrics
model_id – The ID of the model.
kwargs – Additional arguments for
mlflow.models.model.Model
- Returns
A
ModelInfoinstance that contains the metadata of the logged model.
import pandas as pd import mlflow from mlflow.models import infer_signature import pmdarima from pmdarima.metrics import smape # Specify locations of source data and the model artifact SOURCE_DATA = "https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv" ARTIFACT_PATH = "model" # Read data and recode columns sales_data = pd.read_csv(SOURCE_DATA) sales_data.rename(columns={"y": "sales", "ds": "date"}, inplace=True) # Split the data into train/test train_size = int(0.8 * len(sales_data)) train = sales_data[:train_size] test = sales_data[train_size:] with mlflow.start_run(): # Create the model model = pmdarima.auto_arima(train["sales"], seasonal=True, m=12) # Calculate metrics prediction = model.predict(n_periods=len(test)) metrics = {"smape": smape(test["sales"], prediction)} # Infer signature input_sample = pd.DataFrame(train["sales"]) output_sample = pd.DataFrame(model.predict(n_periods=5)) signature = infer_signature(input_sample, output_sample) # Log model mlflow.pmdarima.log_model(model, name=ARTIFACT_PATH, signature=signature)
- mlflow.pmdarima.save_model(pmdarima_model, path, conda_env=None, code_paths=None, mlflow_model=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, pip_requirements=None, extra_pip_requirements=None, metadata=None)[source]
Save a pmdarima
ARIMAmodel orPipelineobject to a path on the local file system.- Parameters
pmdarima_model – pmdarima
ARIMAorPipelinemodel that has beenfiton a temporal series.path – Local path destination for the serialized model (in pickle format) is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in get_default_conda_env(). If
None, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()is added to the model. If the requirement inference fails, it falls back to using get_default_pip_requirements. pip requirements fromconda_envare written to a piprequirements.txtfile and the full conda environment is written toconda.yaml. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "pmdarima==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
For a detailed explanation of
code_pathsfunctionality, recommended usage patterns and limitations, see the code_paths usage guide.mlflow_model –
mlflow.models.Modelthis flavor is being added to.signature –
an instance of the
ModelSignatureclass that describes the model’s inputs and outputs. If not specified but aninput_exampleis supplied, a signature will be automatically inferred based on the supplied input example and model. To disable automatic signature inference when providing an input example, setsignaturetoFalse. To manually infer a model signature, callinfer_signature()on datasets with valid model inputs, such as a training dataset with the target column omitted, and valid model outputs, like model predictions made on the training dataset, for example:from mlflow.models import infer_signature model = pmdarima.auto_arima(data) predictions = model.predict(n_periods=30, return_conf_int=False) signature = infer_signature(data, predictions)
Warning
if utilizing confidence interval generation in the
predictmethod of apmdarimamodel (return_conf_int=True), the signature will not be inferred due to the complex tuple return type when using the nativeARIMA.predict()API.infer_schemawill function correctly if using thepyfuncflavor of the model, though.input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signatureparameter isNone, the input example is used to infer a model signature.pip_requirements – Either an iterable of pip requirement strings (e.g.
["pmdarima", "-r requirements.txt", "-c constraints.txt"]) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"). If provided, this describes the environment this model should be run in. IfNone, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()from the current software environment. If the requirement inference fails, it falls back to using get_default_pip_requirements. Both requirements and constraints are automatically parsed and written torequirements.txtandconstraints.txtfiles, respectively, and stored as part of the model. Requirements are also written to thepipsection of the model’s conda environment (conda.yaml) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txtandconstraints.txtfiles, respectively, and stored as part of the model. Requirements are also written to thepipsection of the model’s conda environment (conda.yaml) file.Warning
The following arguments can’t be specified at the same time:
conda_envpip_requirementsextra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirementsandextra_pip_requirements.metadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
import pandas as pd import mlflow import pmdarima # Specify locations of source data and the model artifact SOURCE_DATA = "https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv" ARTIFACT_PATH = "model" # Read data and recode columns sales_data = pd.read_csv(SOURCE_DATA) sales_data.rename(columns={"y": "sales", "ds": "date"}, inplace=True) # Split the data into train/test train_size = int(0.8 * len(sales_data)) train = sales_data[:train_size] test = sales_data[train_size:] with mlflow.start_run(): # Create the model model = pmdarima.auto_arima(train["sales"], seasonal=True, m=12) # Save the model to the specified path mlflow.pmdarima.save_model(model, "model")