Source code for mlflow.statsmodels

"""
The ``mlflow.statsmodels`` module provides an API for logging and loading statsmodels models.
This module exports statsmodels models with the following flavors:

statsmodels (native) format
    This is the main flavor that can be loaded back into statsmodels, which relies on pickle
    internally to serialize a model.
:py:mod:`mlflow.pyfunc`
    Produced for use by generic pyfunc-based deployment tools and batch inference.

.. _statsmodels.base.model.Results:
    https://www.statsmodels.org/stable/_modules/statsmodels/base/model.html#Results

"""
import logging
import os
import yaml

import mlflow
from mlflow import pyfunc
from mlflow.models import Model
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import ModelSignature
from mlflow.models.utils import ModelInputExample, _save_example
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.environment import (
    _mlflow_conda_env,
    _validate_env_arguments,
    _process_pip_requirements,
    _process_conda_env,
    _CONDA_ENV_FILE_NAME,
    _REQUIREMENTS_FILE_NAME,
    _CONSTRAINTS_FILE_NAME,
    _PYTHON_ENV_FILE_NAME,
    _PythonEnv,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.file_utils import write_to
from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS
from mlflow.utils.model_utils import (
    _get_flavor_configuration,
    _validate_and_copy_code_paths,
    _add_code_from_conf_to_system_path,
    _validate_and_prepare_target_save_path,
)
from mlflow.exceptions import MlflowException
from mlflow.utils.autologging_utils import (
    log_fn_args_as_params,
    autologging_integration,
    safe_patch,
    get_autologging_config,
)
from mlflow.utils.validation import _is_numeric

import itertools
import inspect
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS


FLAVOR_NAME = "statsmodels"
STATSMODELS_DATA_SUBPATH = "model.statsmodels"

_logger = logging.getLogger(__name__)


[docs]def get_default_pip_requirements(): """ :return: A list of default pip requirements for MLflow Models produced by this flavor. Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that, at minimum, contains these requirements. """ return [_get_pinned_requirement("statsmodels")]
[docs]def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
_model_size_threshold_for_emitting_warning = 100 * 1024 * 1024 # 100 MB _save_model_called_from_autolog = False
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def save_model( statsmodels_model, path, conda_env=None, code_paths=None, mlflow_model=None, remove_data: bool = False, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, metadata=None, ): """ Save a statsmodels model to a path on the local file system. :param statsmodels_model: statsmodels model (an instance of `statsmodels.base.model.Results`_) to be saved. :param path: Local path where the model is to be saved. :param conda_env: {{ conda_env }} :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to. :param remove_data: bool. If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} :param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file. .. Note:: Experimental: This parameter may change or be removed in a future release without warning. """ import statsmodels _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) path = os.path.abspath(path) _validate_and_prepare_target_save_path(path) model_data_path = os.path.join(path, STATSMODELS_DATA_SUBPATH) code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) if mlflow_model is None: mlflow_model = Model() if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) if metadata is not None: mlflow_model.metadata = metadata # Save a statsmodels model statsmodels_model.save(model_data_path, remove_data) if _save_model_called_from_autolog and not remove_data: saved_model_size = os.path.getsize(model_data_path) if saved_model_size >= _model_size_threshold_for_emitting_warning: _logger.warning( "The fitted model is larger than " f"{_model_size_threshold_for_emitting_warning // (1024 * 1024)} MB, " f"saving it as artifacts is time consuming.\n" "To reduce model size, use `mlflow.statsmodels.autolog(log_models=False)` and " "manually log model by " '`mlflow.statsmodels.log_model(model, remove_data=True, artifact_path="model")`' ) pyfunc.add_to_model( mlflow_model, loader_module="mlflow.statsmodels", data=STATSMODELS_DATA_SUBPATH, conda_env=_CONDA_ENV_FILE_NAME, python_env=_PYTHON_ENV_FILE_NAME, code=code_dir_subpath, ) mlflow_model.add_flavor( FLAVOR_NAME, statsmodels_version=statsmodels.__version__, data=STATSMODELS_DATA_SUBPATH, code=code_dir_subpath, ) mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) if conda_env is None: if pip_requirements is None: default_reqs = get_default_pip_requirements() # To ensure `_load_pyfunc` can successfully load the model during the dependency # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file. inferred_reqs = mlflow.models.infer_pip_requirements( path, FLAVOR_NAME, fallback=default_reqs, ) default_reqs = sorted(set(inferred_reqs).union(default_reqs)) else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements, ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Save `constraints.txt` if necessary if pip_constraints: write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) # Save `requirements.txt` write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def log_model( statsmodels_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, remove_data: bool = False, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, metadata=None, **kwargs, ): """ Log a statsmodels model as an MLflow artifact for the current run. :param statsmodels_model: statsmodels model (an instance of `statsmodels.base.model.Results`_) to be saved. :param artifact_path: Run-relative artifact path. :param conda_env: {{ conda_env }} :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param registered_model_name: If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param remove_data: bool. If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} :param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file. .. Note:: Experimental: This parameter may change or be removed in a future release without warning. :return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. """ return Model.log( artifact_path=artifact_path, flavor=mlflow.statsmodels, registered_model_name=registered_model_name, statsmodels_model=statsmodels_model, conda_env=conda_env, code_paths=code_paths, signature=signature, input_example=input_example, await_registration_for=await_registration_for, remove_data=remove_data, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, metadata=metadata, **kwargs, )
def _load_model(path): import statsmodels.iolib.api as smio return smio.load_pickle(path) def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_model``. :param path: Local filesystem path to the MLflow Model with the ``statsmodels`` flavor. """ return _StatsmodelsModelWrapper(_load_model(path))
[docs]def load_model(model_uri, dst_path=None): """ Load a statsmodels model from a local file or a run. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html# artifact-locations>`_. :param dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. :return: A statsmodels model (an instance of `statsmodels.base.model.Results`_). """ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) _add_code_from_conf_to_system_path(local_model_path, flavor_conf) statsmodels_model_file_path = os.path.join( local_model_path, flavor_conf.get("data", STATSMODELS_DATA_SUBPATH) ) return _load_model(path=statsmodels_model_file_path)
class _StatsmodelsModelWrapper: def __init__(self, statsmodels_model): self.statsmodels_model = statsmodels_model def predict(self, dataframe): from statsmodels.tsa.base.tsa_model import TimeSeriesModel model = self.statsmodels_model.model if isinstance(model, TimeSeriesModel): # Assume the inference dataframe has columns "start" and "end", and just one row # TODO: move this to a specific mlflow.statsmodels.tsa flavor? Time series models # often expect slightly different arguments to make predictions if dataframe.shape[0] != 1 or not ( "start" in dataframe.columns and "end" in dataframe.columns ): raise MlflowException( "prediction dataframes for a TimeSeriesModel must have exactly one row" + " and include columns called start and end" ) start_date = dataframe["start"][0] end_date = dataframe["end"][0] return self.statsmodels_model.predict(start=start_date, end=end_date) else: return self.statsmodels_model.predict(dataframe)
[docs]class AutologHelpers: # Autologging should be done only in the fit function called by the user, but not # inside other internal fit functions should_autolog = True
# Currently we only autolog basic metrics _autolog_metric_allowlist = [ "aic", "bic", "centered_tss", "condition_number", "df_model", "df_resid", "ess", "f_pvalue", "fvalue", "llf", "mse_model", "mse_resid", "mse_total", "rsquared", "rsquared_adj", "scale", "ssr", "uncentered_tss", ] def _get_autolog_metrics(fitted_model): result_metrics = {} failed_evaluating_metrics = set() for metric in _autolog_metric_allowlist: try: if hasattr(fitted_model, metric): metric_value = getattr(fitted_model, metric) if _is_numeric(metric_value): result_metrics[metric] = metric_value except Exception: failed_evaluating_metrics.add(metric) if len(failed_evaluating_metrics) > 0: _logger.warning( f"Failed to autolog metrics: {', '.join(sorted(failed_evaluating_metrics))}." ) return result_metrics
[docs]@autologging_integration(FLAVOR_NAME) def autolog( log_models=True, log_datasets=True, disable=False, exclusive=False, disable_for_unsupported_versions=False, silent=False, registered_model_name=None, ): # pylint: disable=unused-argument """ Enables (or disables) and configures automatic logging from statsmodels to MLflow. Logs the following: - allowlisted metrics returned by method `fit` of any subclass of statsmodels.base.model.Model, the allowlisted metrics including: {autolog_metric_allowlist} - trained model. - an html artifact which shows the model summary. :param log_models: If ``True``, trained models are logged as MLflow model artifacts. If ``False``, trained models are not logged. Input examples and model signatures, which are attributes of MLflow models, are also omitted when ``log_models`` is ``False``. :param log_datasets: If ``True``, dataset information is logged to MLflow Tracking. If ``False``, dataset information is not logged. :param disable: If ``True``, disables the statsmodels autologging integration. If ``False``, enables the statsmodels autologging integration. :param exclusive: If ``True``, autologged content is not logged to user-created fluent runs. If ``False``, autologged content is logged to the active fluent run, which may be user-created. :param disable_for_unsupported_versions: If ``True``, disable autologging for versions of statsmodels that have not been tested against this version of the MLflow client or are incompatible. :param silent: If ``True``, suppress all event logs and warnings from MLflow during statsmodels autologging. If ``False``, show all events and warnings during statsmodels autologging. :param registered_model_name: If given, each time a model is trained, it is registered as a new model version of the registered model with this name. The registered model is created if it does not already exist. """ import statsmodels # Autologging depends on the exploration of the models class tree within the # `statsmodels.base.models` module. In order to load / access this module, the # `statsmodels.api` module must be imported import statsmodels.api # pylint: disable=unused-import def find_subclasses(klass): """ Recursively return a (non-nested) list of the class object and all its subclasses :param klass: the class whose class subtree we want to retrieve :return: a list of classes that includes the argument in the first position """ subclasses = klass.__subclasses__() if subclasses: subclass_lists = [find_subclasses(c) for c in subclasses] chain = itertools.chain.from_iterable(subclass_lists) result = [klass] + list(chain) return result else: return [klass] def overrides(klass, function_name): """ Returns True when the class passed as first argument overrides the function_name Based on https://stackoverflow.com/a/62303206/5726057 :param klass: the class we are inspecting :param function_name: a string with the name of the method we want to check overriding :return: """ try: superclass = inspect.getmro(klass)[1] overridden = getattr(klass, function_name) is not getattr(superclass, function_name) return overridden except (IndexError, AttributeError): return False def patch_class_tree(klass): """ Patches all subclasses that override any auto-loggable method via monkey patching using the gorilla package, taking the argument as the tree root in the class hierarchy. Every auto-loggable method found in any of the subclasses is replaced by the patched version. :param klass: root in the class hierarchy to be analyzed and patched recursively """ # TODO: add more autologgable methods here (e.g. fit_regularized, from_formula, etc) # See https://www.statsmodels.org/dev/api.html autolog_supported_func = {"fit": wrapper_fit} glob_subclasses = set(find_subclasses(klass)) # Create a patch for every method that needs to be patched, i.e. those # which actually override an autologgable method patches_list = [ # Link the patched function with the original via a local variable in the closure # to allow invoking superclass methods in the context of the subclass, and not # losing the trace of the true original method (clazz, method_name, wrapper_func) for clazz in glob_subclasses for (method_name, wrapper_func) in autolog_supported_func.items() if overrides(clazz, method_name) ] for clazz, method_name, patch_impl in patches_list: safe_patch(FLAVOR_NAME, clazz, method_name, patch_impl, manage_run=True) def wrapper_fit(original, self, *args, **kwargs): should_autolog = False if AutologHelpers.should_autolog: AutologHelpers.should_autolog = False should_autolog = True try: if should_autolog: # This may generate warnings due to collisions in already-logged param names log_fn_args_as_params(original, args, kwargs) # training model model = original(self, *args, **kwargs) if should_autolog: # Log the model if get_autologging_config(FLAVOR_NAME, "log_models", True): global _save_model_called_from_autolog _save_model_called_from_autolog = True registered_model_name = get_autologging_config( FLAVOR_NAME, "registered_model_name", None ) try: log_model( model, artifact_path="model", registered_model_name=registered_model_name, ) finally: _save_model_called_from_autolog = False # Log the most common metrics if isinstance(model, statsmodels.base.wrapper.ResultsWrapper): metrics_dict = _get_autolog_metrics(model) mlflow.log_metrics(metrics_dict) model_summary = model.summary().as_text() mlflow.log_text(model_summary, "model_summary.txt") return model finally: # Clean the shared flag for future calls in case it had been set here ... if should_autolog: AutologHelpers.should_autolog = True patch_class_tree(statsmodels.base.model.Model)
if autolog.__doc__ is not None: autolog.__doc__ = autolog.__doc__.format( autolog_metric_allowlist=", ".join(_autolog_metric_allowlist) )