Source code for mlflow.genai.judges.builtin

from functools import wraps
from typing import TYPE_CHECKING, Any

from mlflow.entities.assessment import Feedback
from mlflow.exceptions import MlflowException
from mlflow.genai.judges.constants import USE_CASE_BUILTIN_JUDGE
from mlflow.genai.judges.prompts.relevance_to_query import RELEVANCE_TO_QUERY_ASSESSMENT_NAME
from mlflow.genai.judges.utils import CategoricalRating, get_default_model, invoke_judge_model
from mlflow.utils.annotations import experimental
from mlflow.utils.docstring_utils import format_docstring

if TYPE_CHECKING:
    from mlflow.genai.utils.type import FunctionCall
    from mlflow.types.chat import ChatTool

_MODEL_API_DOC = {
    "model": """Judge model to use. Must be either `"databricks"` or a form of
`<provider>:/<model-name>`, such as `"openai:/gpt-4.1-mini"`,
`"anthropic:/claude-3.5-sonnet-20240620"`. MLflow natively supports
`["openai", "anthropic", "bedrock", "mistral"]`, and more providers are supported
through `LiteLLM <https://docs.litellm.ai/docs/providers>`_.
Default model depends on the tracking URI setup:

* Databricks: `databricks`
* Otherwise: `openai:/gpt-4.1-mini`.
""",
}


def _sanitize_feedback(feedback: Feedback) -> Feedback:
    """Sanitize the feedback object from the databricks judges.

    The judge returns a CategoricalRating class defined in the databricks-agents package.
    This function converts it to our CategoricalRating definition above.

    Args:
        feedback: The Feedback object to convert.

    Returns:
        A new Feedback object with our CategoricalRating.
    """
    feedback.value = CategoricalRating(feedback.value) if feedback.value else feedback.value
    return feedback


def requires_databricks_agents(func):
    """Decorator to check if the `databricks-agents` package is installed."""

    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
            import databricks.agents.evals.judges  # noqa: F401

        except ImportError:
            raise ImportError(
                f"The `databricks-agents` package is required to use "
                f"`mlflow.genai.judges.{func.__name__}`. "
                "Please install it with `pip install databricks-agents`."
            )

        return func(*args, **kwargs)

    return wrapper


[docs]@format_docstring(_MODEL_API_DOC) def is_context_relevant( *, request: str, context: Any, name: str | None = None, model: str | None = None ) -> Feedback: """ LLM judge determines whether the given context is relevant to the input request. Args: request: Input to the application to evaluate, user's question or query. context: Context to evaluate the relevance to the request. Supports any JSON-serializable object. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the context is relevant to the request. Example: The following example shows how to evaluate whether a document retrieved by a retriever is relevant to the user's question. .. code-block:: python from mlflow.genai.judges import is_context_relevant feedback = is_context_relevant( request="What is the capital of France?", context="Paris is the capital of France.", ) print(feedback.value) # "yes" feedback = is_context_relevant( request="What is the capital of France?", context="Paris is known for its Eiffel Tower.", ) print(feedback.value) # "no" """ from mlflow.genai.judges.prompts.relevance_to_query import get_prompt model = model or get_default_model() # NB: User-facing name for the is_context_relevant assessment. This is required # since the existing databricks judge is called `relevance_to_query` assessment_name = name or RELEVANCE_TO_QUERY_ASSESSMENT_NAME if model == "databricks": from databricks.agents.evals.judges import relevance_to_query feedback = relevance_to_query( request=request, response=str(context), assessment_name=assessment_name, ) else: prompt = get_prompt(request, str(context)) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@format_docstring(_MODEL_API_DOC) def is_context_sufficient( *, request: str, context: Any, expected_facts: list[str], expected_response: str | None = None, name: str | None = None, model: str | None = None, ) -> Feedback: """ LLM judge determines whether the given context is sufficient to answer the input request. Args: request: Input to the application to evaluate, user's question or query. context: Context to evaluate the sufficiency of. Supports any JSON-serializable object. expected_facts: A list of expected facts that should be present in the context. Optional. expected_response: The expected response from the application. Optional. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the context is sufficient to answer the request. Example: The following example shows how to evaluate whether the documents returned by a retriever gives sufficient context to answer the user's question. .. code-block:: python from mlflow.genai.judges import is_context_sufficient feedback = is_context_sufficient( request="What is the capital of France?", context=[ {"content": "Paris is the capital of France."}, {"content": "Paris is known for its Eiffel Tower."}, ], expected_facts=["Paris is the capital of France."], ) print(feedback.value) # "yes" feedback = is_context_sufficient( request="What is the capital of France?", context={"content": "France is a country in Europe."}, expected_response="Paris is the capital of France.", ) print(feedback.value) # "no" """ from mlflow.genai.judges.prompts.context_sufficiency import ( CONTEXT_SUFFICIENCY_FEEDBACK_NAME, get_prompt, ) model = model or get_default_model() assessment_name = name or CONTEXT_SUFFICIENCY_FEEDBACK_NAME if model == "databricks": from databricks.agents.evals.judges import context_sufficiency feedback = context_sufficiency( request=request, retrieved_context=context, expected_facts=expected_facts, expected_response=expected_response, assessment_name=assessment_name, ) else: prompt = get_prompt( request=request, context=context, expected_response=expected_response, expected_facts=expected_facts, ) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@format_docstring(_MODEL_API_DOC) def is_correct( *, request: str, response: str, expected_facts: list[str] | None = None, expected_response: str | None = None, name: str | None = None, model: str | None = None, ) -> Feedback: """ LLM judge determines whether the expected facts are supported by the response. This judge evaluates if the facts specified in ``expected_facts`` or ``expected_response`` are contained in or supported by the model's response. .. note:: This judge checks if expected facts are **supported by** the response, not whether the response is **equivalent to** the expected output. The response may contain additional information beyond the expected facts and still be considered correct. Args: request: Input to the application to evaluate, user's question or query. response: The response from the application to evaluate. expected_facts: A list of expected facts that should be supported by the response. expected_response: The expected response containing facts that should be supported. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the expected facts are supported by the response. Example: .. code-block:: python from mlflow.genai.judges import is_correct # Response supports the expected response - correct feedback = is_correct( request="What is the capital of France?", response="Paris is the capital of France.", expected_response="Paris", ) print(feedback.value) # "yes" # Response contradicts the expected facts - incorrect feedback = is_correct( request="What is the capital of France?", response="London is the capital of France.", expected_facts=["Paris is the capital of France"], ) print(feedback.value) # "no" """ from mlflow.genai.judges.prompts.correctness import CORRECTNESS_FEEDBACK_NAME, get_prompt if expected_response is not None and expected_facts is not None: raise MlflowException( "Only one of expected_response or expected_facts should be provided, not both." ) model = model or get_default_model() assessment_name = name or CORRECTNESS_FEEDBACK_NAME if model == "databricks": from databricks.agents.evals.judges import correctness feedback = correctness( request=request, response=response, expected_facts=expected_facts, expected_response=expected_response, assessment_name=assessment_name, ) else: prompt = get_prompt( request=request, response=response, expected_response=expected_response, expected_facts=expected_facts, ) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@format_docstring(_MODEL_API_DOC) def is_grounded( *, request: str, response: str, context: Any, name: str | None = None, model: str | None = None, ) -> Feedback: """ LLM judge determines whether the given response is grounded in the given context. Args: request: Input to the application to evaluate, user's question or query. response: The response from the application to evaluate. context: Context to evaluate the response against. Supports any JSON-serializable object. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the response is grounded in the context. Example: The following example shows how to evaluate whether the response is grounded in the context. .. code-block:: python from mlflow.genai.judges import is_grounded feedback = is_grounded( request="What is the capital of France?", response="Paris", context=[ {"content": "Paris is the capital of France."}, {"content": "Paris is known for its Eiffel Tower."}, ], ) print(feedback.value) # "yes" feedback = is_grounded( request="What is the capital of France?", response="London is the capital of France.", context=[ {"content": "Paris is the capital of France."}, {"content": "Paris is known for its Eiffel Tower."}, ], ) print(feedback.value) # "no" """ from mlflow.genai.judges.prompts.groundedness import GROUNDEDNESS_FEEDBACK_NAME, get_prompt model = model or get_default_model() assessment_name = name or GROUNDEDNESS_FEEDBACK_NAME if model == "databricks": from databricks.agents.evals.judges import groundedness feedback = groundedness( request=request, response=response, retrieved_context=context, assessment_name=assessment_name, ) else: prompt = get_prompt( request=request, response=response, context=context, ) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@experimental(version="3.8.0") @format_docstring(_MODEL_API_DOC) def is_tool_call_efficient( *, request: str, tools_called: list["FunctionCall"], available_tools: list["ChatTool"], name: str | None = None, model: str | None = None, ) -> Feedback: """ LLM judge determines whether the agent's tool usage is efficient and free of redundancy. This judge analyzes the agent's trajectory for redundancy, such as repeated tool calls with the same tool name and identical or very similar arguments. Args: request: The original user request that the agent is trying to fulfill. tools_called: The sequence of tools that were called by the agent. Each element should be a FunctionCall object. available_tools: The set of available tools that the agent could choose from. Each element should be a dictionary containing the tool name and description. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the tool usage is efficient ("yes") or contains redundancy ("no"). Example: The following example shows how to evaluate whether an agent's tool calls are efficient. .. code-block:: python from mlflow.genai.judges import is_tool_call_efficient from mlflow.genai.utils.type import FunctionCall # Efficient tool usage feedback = is_tool_call_efficient( request="What is the capital of France and translate it to Spanish?", tools_called=[ FunctionCall( name="search", arguments={"query": "capital of France"}, outputs="Paris", ), FunctionCall( name="translate", arguments={"text": "Paris", "target": "es"}, outputs="París", ), ], available_tools=["search", "translate", "calculate"], ) print(feedback.value) # "yes" # Redundant tool usage feedback = is_tool_call_efficient( request="What is the capital of France?", tools_called=[ FunctionCall( name="search", arguments={"query": "capital of France"}, outputs="Paris", ), FunctionCall( name="search", arguments={"query": "capital of France"}, outputs="Paris", ), # Redundant ], available_tools=["search", "translate", "calculate"], ) print(feedback.value) # "no" # Tool call with exception feedback = is_tool_call_efficient( request="Get weather for an invalid city", tools_called=[ FunctionCall( name="get_weather", arguments={"city": "InvalidCity123"}, exception="ValueError: City not found", ), ], available_tools=["get_weather"], ) print(feedback.value) # Judge evaluates based on exception context """ from mlflow.genai.judges.prompts.tool_call_efficiency import ( TOOL_CALL_EFFICIENCY_FEEDBACK_NAME, get_prompt, ) model = model or get_default_model() assessment_name = name or TOOL_CALL_EFFICIENCY_FEEDBACK_NAME prompt = get_prompt(request=request, tools_called=tools_called, available_tools=available_tools) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@format_docstring(_MODEL_API_DOC) def is_safe(*, content: str, name: str | None = None, model: str | None = None) -> Feedback: """ LLM judge determines whether the given response is safe. Args: content: Text content to evaluate for safety. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the response is safe. Example: .. code-block:: python from mlflow.genai.judges import is_safe feedback = is_safe(content="I am a happy person.") print(feedback.value) # "yes" """ from mlflow.genai.judges.prompts.safety import SAFETY_ASSESSMENT_NAME, get_prompt model = model or get_default_model() assessment_name = name or SAFETY_ASSESSMENT_NAME if model == "databricks": from databricks.agents.evals.judges import safety feedback = safety(response=content, assessment_name=assessment_name) else: prompt = get_prompt(content=content) feedback = invoke_judge_model( model, prompt, assessment_name=assessment_name, use_case=USE_CASE_BUILTIN_JUDGE ) return _sanitize_feedback(feedback)
[docs]@format_docstring(_MODEL_API_DOC) def meets_guidelines( *, guidelines: str | list[str], context: dict[str, Any], name: str | None = None, model: str | None = None, ) -> Feedback: """ LLM judge determines whether the given response meets the given guideline(s). Args: guidelines: A single guideline or a list of guidelines. context: Mapping of context to be evaluated against the guidelines. For example, pass {"response": "<response text>"} to evaluate whether the response meets the given guidelines. name: Optional name for overriding the default name of the returned feedback. model: {{ model }} Returns: A :py:class:`mlflow.entities.assessment.Feedback~` object with a "yes" or "no" value indicating whether the response meets the guideline(s). Example: The following example shows how to evaluate whether the response meets the given guideline(s). .. code-block:: python from mlflow.genai.judges import meets_guidelines feedback = meets_guidelines( guidelines="Be polite and respectful.", context={"response": "Hello, how are you?"}, ) print(feedback.value) # "yes" feedback = meets_guidelines( guidelines=["Be polite and respectful.", "Must be in English."], context={"response": "Hola, ¿cómo estás?"}, ) print(feedback.value) # "no" """ from mlflow.genai.judges.prompts.guidelines import GUIDELINES_FEEDBACK_NAME, get_prompt model = model or get_default_model() if model == "databricks": from databricks.agents.evals.judges import guidelines as guidelines_judge feedback = guidelines_judge( guidelines=guidelines, context=context, assessment_name=name, ) else: prompt = get_prompt(guidelines, context) feedback = invoke_judge_model( model, prompt, assessment_name=name or GUIDELINES_FEEDBACK_NAME, use_case=USE_CASE_BUILTIN_JUDGE, ) return _sanitize_feedback(feedback)