MLflow 1.16.0
· One min read
We are happy to announce the availability of MLflow 1.16.0!
In addition to bug and documentation fixes, MLflow 1.16.0 includes the following features and improvements:
- Add
mlflow.pyspark.ml.autolog()API for autologging ofpyspark.mlestimators (#4228, @WeichenXu123) - Add
mlflow.catboost.log_model,mlflow.catboost.save_model,mlflow.catboost.load_modelAPIs for CatBoost model persistence (#2417, @harupy) - Enable
mlflow.pyfunc.spark_udfto use column names from model signature by default (#4236, @Loquats) - Add
datetimedata type for model signatures (#4241, @vperiyasamy) - Add
mlflow.sklearn.eval_and_log_metricsAPI that computes and logs metrics for the given scikit-learn model and labeled dataset. (#4218, @alkispoly-db)
For a comprehensive list of changes, see the release change log, and check out the latest documentation on mlflow.org.
