from dataclasses import dataclass
from typing import Optional
from mlflow.utils.annotations import experimental
[docs]@experimental
@dataclass
class TraceDestination:
"""A configuration object for specifying the destination of trace data."""
@property
def type(self) -> str:
"""Type of the destination."""
raise NotImplementedError
[docs]@experimental
@dataclass
class MlflowExperiment(TraceDestination):
"""
A destination representing an MLflow experiment.
By setting this destination in the :py:func:`mlflow.tracing.set_destination` function,
MLflow will log traces to the specified experiment.
Attributes:
experiment_id: The ID of the experiment to log traces to. If not specified,
the current active experiment will be used.
tracking_uri: The tracking URI of the MLflow server to log traces to.
If not specified, the current tracking URI will be used.
"""
experiment_id: Optional[str] = None
tracking_uri: Optional[str] = None
@property
def type(self) -> str:
return "experiment"