Source code for mlflow.tracing.destination

from dataclasses import dataclass
from typing import Optional

from mlflow.utils.annotations import experimental


[docs]@experimental @dataclass class TraceDestination: """A configuration object for specifying the destination of trace data.""" @property def type(self) -> str: """Type of the destination.""" raise NotImplementedError
[docs]@experimental @dataclass class MlflowExperiment(TraceDestination): """ A destination representing an MLflow experiment. By setting this destination in the :py:func:`mlflow.tracing.set_destination` function, MLflow will log traces to the specified experiment. Attributes: experiment_id: The ID of the experiment to log traces to. If not specified, the current active experiment will be used. tracking_uri: The tracking URI of the MLflow server to log traces to. If not specified, the current tracking URI will be used. """ experiment_id: Optional[str] = None tracking_uri: Optional[str] = None @property def type(self) -> str: return "experiment"