mlflow.environment_variables

This module defines environment variables used in MLflow.

mlflow.environment_variables.MLFLOW_ALLOW_FILE_URI_AS_MODEL_VERSION_SOURCE = 'MLFLOW_ALLOW_FILE_URI_AS_MODEL_VERSION_SOURCE'

Specifies whether or not to allow using a file URI as a model version source. Please be aware that setting this environment variable to True is potentially risky because it can allow access to arbitrary files on the specified filesystem (default: False).

mlflow.environment_variables.MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT = 'MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT'

(Experimental, may be changed or removed) Specifies the timeout to use when uploading or downloading a file (default: None). If None, individual artifact stores will choose defaults.

mlflow.environment_variables.MLFLOW_DEFAULT_PREDICTION_DEVICE = 'MLFLOW_DEFAULT_PREDICTION_DEVICE'

Specifies the device intended for use in the predict function - can be used to override behavior where the GPU is used by default when available by setting this environment variable to be cpu. Currently, this variable is only supported for the MLflow PyTorch and HuggingFace flavors. For the HuggingFace flavor, note that device must be parseable as an integer.

mlflow.environment_variables.MLFLOW_DFS_TMP = 'MLFLOW_DFS_TMP'

Specifies the dfs_tmpdir parameter to use for mlflow.spark.save_model, mlflow.spark.log_model and mlflow.spark.load_model. See https://www.mlflow.org/docs/latest/python_api/mlflow.spark.html#mlflow.spark.save_model for more information. (default: /tmp/mlflow)

mlflow.environment_variables.MLFLOW_DISABLE_ENV_MANAGER_CONDA_WARNING = 'MLFLOW_DISABLE_ENV_MANAGER_CONDA_WARNING'

Specifies whether or not to print a warning when –env-manager=conda is specified. (default: False)

mlflow.environment_variables.MLFLOW_GCS_DEFAULT_TIMEOUT = 'MLFLOW_GCS_DEFAULT_TIMEOUT'

(Deprecated, please use MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT) Specifies the default timeout to use when downloading/uploading a file from/to GCS (default: None). If None, google.cloud.storage.constants._DEFAULT_TIMEOUT is used.

mlflow.environment_variables.MLFLOW_GCS_DOWNLOAD_CHUNK_SIZE = 'MLFLOW_GCS_DOWNLOAD_CHUNK_SIZE'

Specifies the chunk size to use when downloading a file from GCS (default: None). If None, the chunk size is automatically determined by the google-cloud-storage package.

mlflow.environment_variables.MLFLOW_GCS_UPLOAD_CHUNK_SIZE = 'MLFLOW_GCS_UPLOAD_CHUNK_SIZE'

Specifies the chunk size to use when uploading a file to GCS. (default: None). If None, the chunk size is automatically determined by the google-cloud-storage package.

mlflow.environment_variables.MLFLOW_HTTP_REQUEST_BACKOFF_FACTOR = 'MLFLOW_HTTP_REQUEST_BACKOFF_FACTOR'

Specifies the backoff increase factor between MLflow HTTP request failures (default: 2)

mlflow.environment_variables.MLFLOW_HTTP_REQUEST_MAX_RETRIES = 'MLFLOW_HTTP_REQUEST_MAX_RETRIES'

Specifies the maximum number of retries for MLflow HTTP requests (default: 5)

mlflow.environment_variables.MLFLOW_HTTP_REQUEST_TIMEOUT = 'MLFLOW_HTTP_REQUEST_TIMEOUT'

Specifies the timeout in seconds for MLflow HTTP requests (default: 120)

mlflow.environment_variables.MLFLOW_KERBEROS_TICKET_CACHE = 'MLFLOW_KERBEROS_TICKET_CACHE'

Specifies the location of a Kerberos ticket cache to use for HDFS artifact operations. (default: None)

mlflow.environment_variables.MLFLOW_KERBEROS_USER = 'MLFLOW_KERBEROS_USER'

Specifies a Kerberos user for HDFS artifact operations. (default: None)

mlflow.environment_variables.MLFLOW_OPENAI_RETRIES_ENABLED = 'MLFLOW_OPENAI_RETRIES_ENABLED'

Specifier whether or not to retry OpenAI API calls.

mlflow.environment_variables.MLFLOW_OPENAI_SECRET_SCOPE = 'MLFLOW_OPENAI_SECRET_SCOPE'

Specifies the name of the Databricks secret scope to use for storing OpenAI API keys.

mlflow.environment_variables.MLFLOW_PYARROW_EXTRA_CONF = 'MLFLOW_PYARROW_EXTRA_CONF'

Specifies extra pyarrow configurations for HDFS artifact operations. (default: None)

mlflow.environment_variables.MLFLOW_REQUIREMENTS_INFERENCE_TIMEOUT = 'MLFLOW_REQUIREMENTS_INFERENCE_TIMEOUT'

Specifies the timeout_seconds for MLflow Model dependency inference operations. (default: 120)

mlflow.environment_variables.MLFLOW_S3_ENDPOINT_URL = 'MLFLOW_S3_ENDPOINT_URL'

Specifies the S3 endpoint URL to use for S3 artifact operations. (default: None)

mlflow.environment_variables.MLFLOW_S3_IGNORE_TLS = 'MLFLOW_S3_IGNORE_TLS'

Specifies whether or not to skip TLS certificate verification for S3 artifact operations. (default: False)

mlflow.environment_variables.MLFLOW_S3_UPLOAD_EXTRA_ARGS = 'MLFLOW_S3_UPLOAD_EXTRA_ARGS'

Specifies extra arguments for S3 artifact uploads. (default: None)

mlflow.environment_variables.MLFLOW_SCORING_SERVER_REQUEST_TIMEOUT = 'MLFLOW_SCORING_SERVER_REQUEST_TIMEOUT'

Specifies the MLflow Model Scoring server request timeout in seconds (default: 60)

mlflow.environment_variables.MLFLOW_SQLALCHEMYSTORE_ECHO = 'MLFLOW_SQLALCHEMYSTORE_ECHO'

Specifies the echo parameter to use for sqlalchemy.create_engine in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.echo for more information. (default: False)

mlflow.environment_variables.MLFLOW_SQLALCHEMYSTORE_MAX_OVERFLOW = 'MLFLOW_SQLALCHEMYSTORE_MAX_OVERFLOW'

Specifies the max_overflow parameter to use for sqlalchemy.create_engine in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.max_overflow for more information. (default: None)

mlflow.environment_variables.MLFLOW_SQLALCHEMYSTORE_POOLCLASS = 'MLFLOW_SQLALCHEMYSTORE_POOLCLASS'

Specifies the poolclass parameter to use for sqlalchemy.create_engine in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.poolclass for more information. (default: None)

mlflow.environment_variables.MLFLOW_SQLALCHEMYSTORE_POOL_RECYCLE = 'MLFLOW_SQLALCHEMYSTORE_POOL_RECYCLE'

Specifies the pool_recycle parameter to use for sqlalchemy.create_engine in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.pool_recycle for more information. (default: None)

mlflow.environment_variables.MLFLOW_SQLALCHEMYSTORE_POOL_SIZE = 'MLFLOW_SQLALCHEMYSTORE_POOL_SIZE'

Specifies the pool_size parameter to use for sqlalchemy.create_engine in the SQLAlchemy tracking store. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine.params.pool_size for more information. (default: None)

mlflow.environment_variables.MLFLOW_TRACKING_AWS_SIGV4 = 'MLFLOW_TRACKING_AWS_SIGV4'

Specifies whether MLFlow HTTP requests should be signed using AWS signature V4. It will overwrite (default: False). When set, it will overwrite the “Authorization” HTTP header. See https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html for more information.

mlflow.environment_variables.MLFLOW_WHEELED_MODEL_PIP_DOWNLOAD_OPTIONS = 'MLFLOW_WHEELED_MODEL_PIP_DOWNLOAD_OPTIONS'

(Experimental, may be changed or removed) Specifies the download options to be used by pip wheel when add_libraries_to_model is used to create and log model dependencies as model artifacts. The default behavior only uses dependency binaries and no source packages. (default: --only-binary=:all:).